Albandea, D., Catumba, G., & Ramos, A. (2024). Strong CP problem in the quantum rotor. Phys. Rev. D, 110(9), 094512–11pp.
Abstract: Recent studies have claimed that the strong CP problem does not occur in QCD, proposing a new order of limits in volume and topological sectors when studying observables on the lattice. In order to shed light on this issue, we study the effect of the topological theta-term on a simple quantum mechanical rotor that allows a lattice description. The topological susceptibility and the theta-dependence of the energy spectrum are both computed using local lattice correlation functions. The sign problem is overcome by considering Taylor expansions in theta, exploiting automatic differentiation methods for Monte Carlo processes. Our findings confirm the conventional wisdom on the strong CP problem.
|
Nagahiro, H., Hirenzaki, S., Oset, E., & Ramos, A. (2012). eta '-Nucleus optical potential and possible eta ' bound states. Phys. Lett. B, 709(1-2), 87–92.
Abstract: Starting from a recent model of the eta'N interaction, we evaluate the eta'-nucleus optical potential, including the contribution of lowest order in density, t rho/2m(eta'), together with the second-order terms accounting for eta' absorption by two nucleons. We also calculate the formation cross section of the eta' bound states from (pi(+), p) reactions on nuclei. The eta'-nucleus potential suffers from uncertainties tied to the poorly known eta'N interaction, which can be partially constrained by the experimental modulus of the eta'N scattering length and/or the recently measured transparency ratios in eta' nuclear photoproduction. Assuming an attractive interaction and taking the claimed experimental value vertical bar a(eta'N)vertical bar = 0.1 fm, we obtain an eta' optical potential in nuclear matter at saturation density of V eta' = -(8.7 + 1.8i) MeV, not attractive enough to produce eta' bound states in light nuclei. Larger values of the scattering length give rise to deeper optical potentials, with moderate enough imaginary parts. For a value vertical bar a(eta'N)vertical bar = 0.3 fm, which can still be considered to lie within the uncertainties of the experimental constraints, the spectra of light and medium nuclei show clear structures associated to eta'-nuclear bound states and to threshold enhancements in the unbound region.
|
Dorigo, T. et al, Ramos, A., & Ruiz de Austri, R. (2023). Toward the end-to-end optimization of particle physics instruments with differentiable programming. Rev. Phys., 10, 100085– pp.
Abstract: The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, due to the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, “experience-driven” layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized through a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters.
|
Feijoo, A., Magas, V. K., Ramos, A., & Oset, E. (2016). A hidden-charm S =-1 pentaquark from the decay Lambda(b) into J/psi eta Lambda states. Eur. Phys. J. C, 76(8), 446–12pp.
Abstract: The hidden-charm pentaquark P-c(4450) observed recently by the LHCb collaboration may be of molecular nature, as advocated by some unitary approaches that also predict pentaquark partners in the strangeness S = -1 sector. In this work we argue that a hidden-charm strange pentaquark could be seen from the decay of the Lambda b, just as in the case of the non-strange P-c(4450), but looking into the J/psi eta Lambda decay mode and forming the invariant mass spectrum of J/psi Lambda pairs. In the model presented here, which assumes a standard weak decay topology and incorporates the hadronization process and final-state interaction effects, we find the J/psi eta Lambda final states to be populated with similar strength as the J/psi K- p states employed for the observation of the non-strange pentaquark. This makes the Lambda b -> J/psi eta Lambda decay to be an interesting process to observe a possible strange partner of the P-c(4450). We study the dependence of the J/psi Lambda mass spectra on various model ingredients and on the unknown properties of the strange pentaquark.
|
Hernandez, P., Pena, C., Ramos, A., & Gomez-Cadenas, J. J. (2021). A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times. PLoS One, 16(2), e0244107–22pp.
Abstract: The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.
|