|   | 
Details
   web
Records
Author Alvarez-Ruso, L.; Hernandez, E.; Nieves, J.; Vicente Vacas, M.J.
Title Watson's theorem and the N Delta(1232) axial transition Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 1 Pages 014016 - 16pp
Keywords
Abstract (down) We present a new determination of the N Delta axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al. [Phys. Rev. D 76, 033005 (2007)] is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger C-5(A) (0), in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.
Address [Alvarez-Ruso, L.; Nieves, J.] Ctr Mixto CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000368324700003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2521
Permanent link to this record
 

 
Author Albertus, C.; Hernandez, E.; Nieves, J.
Title Hyperfine mixing in electromagnetic decay of doubly heavy bc baryons Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 690 Issue 3 Pages 265-271
Keywords Hyperfine mixing; Double heavy bc baryons
Abstract (down) We investigate the role of hyperfine mixing in the electromagnetic decay of ground state doubly heavy bc baryons. As in the case of a previous calculation on b -> c semileptonic decays of doubly heavy baryons, we find large corrections to the electromagnetic decay widths due to this mixing. Contrary to the weak case just mentioned, we find here that one cannot use electromagnetic width relations obtained in the infinite heavy quark mass limit to experimentally extract information on the admixtures in a model independent way.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000279388800012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 416
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J.
Title Hadron and lepton tensors in semileptonic decays including new physics Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 11 Pages 113004 - 24pp
Keywords
Abstract (down) We extend our general framework for semileptonic decay, originally introduced in N. Penalva et al. [Phys. Rev. D 100, 113007 (2019)], with the addition of new physics (NP) tensor terms. In this way, all the NP effective Hamiltonians that are considered in lepton flavor universality violation (LFUV) studies have now been included. Those are left and right vector and scalar NP Hamiltonians and the NP tensor one. Besides, we now also give general expressions that allow for complex Wilson coefficients. The scheme developed is totally general and it can be applied to any charged current semileptonic decay, involving any quark flavors or initial and final hadron states. We show that all the hadronic input, including NP effects, can be parametrized in terms of 16 Lorentz scalar structure functions, constructed out of the NP complex Wilson coefficients and the genuine hadronic responses, with the latter determined by the matrix elements of the involved hadron operators. In the second part of this work, we use this formalism to obtain the complete NP effects in the Ab Acr(/ semileptonic decay, where LFUV, if finally confirmed, is also expected to be seen. We- stress the relevance of the center of mass (CM) d2F/ (dwd cos 0i) and laboratory (LAB) d2F/(dwdE,) differential decay widths, with (o the product of the hadron four-velocities, Oe the angle made by the three -momenta of the charged lepton and the final hadron in the 11/- CM frame and the charged lepton energy in the decaying hadron rest frame. While models with very different strengths in the NP terms give the same differential d17 do) and total decay widths for this decay, they predict very different numerical results for some of the cos (.),, and E coefficient -functions that determine the above two distributions. Thus, the combined analysis of the CM d2F1(dcodcos0,,) and LAB d21'/(doidE,.) differential decay widths will help clarifying what kind of NP is a better candidate in order to explain LFUV.
Address [Penalva, Neus; Hernandez, Eliecer] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000543941400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4448
Permanent link to this record
 

 
Author Albertus, C.; Hernandez, E.; Nieves, J.
Title Exclusive c -> s, d semileptonic decays of ground-state spin-1/2 doubly charmed baryons Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 704 Issue 5 Pages 499-509
Keywords
Abstract (down) We evaluate exclusive semileptonic decays of ground-state spin-1/2 doubly heavy charmed baryons driven by a c -> s, d transition at the quark level. Our results for the form factors are consistent with heavy quark spin symmetry constraints which are valid in the limit of an infinitely massive charm quark and near zero recoil. Only a few exclusive semileptonic decay channels have been theoretically analyzed before. For those cases we find that our results are in a reasonable agreement with previous calculations.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000296549200017 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 828
Permanent link to this record
 

 
Author Albertus, C.; Hernandez, E.; Nieves, J.
Title Exclusive c -> s, d semileptonic decays of ground-state spin-1/2 and spin-3/2 doubly heavy cb baryons Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 9 Pages 094035 - 21pp
Keywords
Abstract (down) We evaluate exclusive semileptonic decays of ground-state spin-1/2 and spin-3/2 doubly heavy cb baryons driven by a c --> s, d transition at the quark level. We check our results for the form factors against heavy quark spin symmetry constraints obtained in the limit of very large heavy quark masses and near zero recoil. Based on those constraints we make model-independent, though approximate, predictions for ratios of decay widths.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000304652600002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1043
Permanent link to this record