toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Folgado, M.G.; Sanz, V. url  doi
openurl 
  Title On the Interpretation of Nonresonant Phenomena at Colliders Type Journal Article
  Year 2021 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2021 Issue Pages 2573471 - 12pp  
  Keywords  
  Abstract (down) With null results in resonance searches at the LHC, the physics potential focus is now shifting towards the interpretation of nonresonant phenomena. An example of such shift is the increased popularity of the EFT programme. We can embark on such programme owing to the good integrated luminosity and an excellent understanding of the detectors, which will allow these searches to become more intense as the LHC continues. In this paper, we provide a framework to perform this interpretation in terms of a diverse set of scenarios, including (1) generic heavy new physics described at low energies in terms of a derivative expansion, such as in the EFT approach; (2) very light particles with derivative couplings, such as axions or other light pseudo-Goldstone bosons; and (3) the effect of a quasicontinuum of resonances, which can come from a number of strongly coupled theories, extradimensional models, clockwork set-ups, and their deconstructed cousins. These scenarios are not equivalent despite all nonresonance, although the matching among some of them is possible, and we provide it in this paper.  
  Address [Folgado, Miguel G.; Sanz, Veronica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Valencia, Spain, Email: migarfol@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636258800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4775  
Permanent link to this record
 

 
Author Bagnaschi, E.; Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T. url  doi
openurl 
  Title SMEFT analysis of m(W) Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 308 - 22pp  
  Keywords Electroweak Precision Physics; SMEFT  
  Abstract (down) We use the Fitmaker tool to incorporate the recent CDF measurement of mW in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O-HWB, O-HD, O (l) (l) or O ((3)) (H l) with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O-HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z 0 vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.  
  Address [Bagnaschi, Emanuele; Ellis, John; You, Tevong] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: emanuele.bagnaschi@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000848742400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5349  
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 081 - 47pp  
  Keywords SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology  
  Abstract (down) We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067194100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5688  
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.; Soughton, M. url  doi
openurl 
  Title Using machine learning to disentangle LHC signatures of Dark Matter candidates Type Journal Article
  Year 2021 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 10 Issue 6 Pages 151 - 26pp  
  Keywords  
  Abstract (down) We study the prospects of characterising Dark Matter at colliders using Machine Learning (ML) techniques. We focus on the monojet and missing transverse energy (MET) channel and propose a set of benchmark models for the study: a typical WIMP Dark Matter candidate in the form of a SUSY neutralino, a pseudo-Goldstone impostor in the shape of an Axion-Like Particle, and a light Dark Matter impostor whose interactions are mediated by a heavy particle. All these benchmarks are tensioned against each other, and against the main SM background (Z+jets). Our analysis uses both the leading-order kinematic features as well as the information of an additional hard jet. We explore different representations of the data, from a simple event data sample with values of kinematic variables fed into a Logistic Regression algorithm or a Fully Connected Neural Network, to a transformation of the data into images related to probability distributions, fed to Deep and Convolutional Neural Networks. We also study the robustness of our method against including detector effects, dropping kinematic variables, or changing the number of events per image. In the case of signals with more combinatorial possibilities (events with more than one hard jet), the most crucial data features are selected by performing a Principal Component Analysis. We compare the performance of all these methods, and find that using the 2D images of the combined information of multiple events significantly improves the discrimination performance.  
  Address [Khosa, Charanjit Kaur; Sanz, Veronica; Soughton, Michael] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England, Email: Charanjit.Kaur@sussex.ac.uk;  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000680038800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4927  
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V. url  doi
openurl 
  Title On the Impact of the LHC Run 2 Data on General Composite Higgs Scenarios Type Journal Article
  Year 2022 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2022 Issue Pages 8970837 - 13pp  
  Keywords  
  Abstract (down) We study the impact of Run 2 LHC data on general composite Higgs scenarios, where nonlinear effects, mixing with additional scalars, and new fermionic degrees of freedom could simultaneously contribute to the modification of Higgs properties. We obtain new experimental limits on the scale of compositeness, the mixing with singlets and doublets with the Higgs, and the mass and mixing angle of top-partners. We also show that for scenarios where new fermionic degrees of freedom are involved in electroweak symmetry breaking, there is an interesting interplay among Higgs coupling measurements, boosted Higgs properties, SMEFT global analyses, and direct searches for single and double production of vector-like quarks.  
  Address [Khosa, Charanjit K.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: khosacharanjit@gmail.com;  
  Corporate Author Thesis  
  Publisher Hindawi Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000766325700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5153  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva