toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing neutrino magnetic moments at the Spallation Neutron Source facility Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 1 Pages 013011 - 12pp  
  Keywords  
  Abstract (up) Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrinonucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of chi(2) analysis employing realistic nuclear structure calculations in the context of the quasiparticle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for standard model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge radius. We illustrate our results for various choices of experimental setup and target material.  
  Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Theoret Phys Sect, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358256700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2311  
Permanent link to this record
 

 
Author Papoulias, D.K.; Kosmas, T.S.; Sahu, R.; Kota, V.K.B.; Hota, M. url  doi
openurl 
  Title Constraining nuclear physics parameters with current and future COHERENT data Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 800 Issue Pages 135133 - 9pp  
  Keywords Coherent neutrino elastic neutrino-nucleus; scattering; COHERENT experiment; Deformed shell model; Weak neutron form factors  
  Abstract (up) Motivated by the recent observation of coherent elastic neutrino-nucleus scattering (CE nu NS) at the COHERENT experiment, our goal is to explore its potential in probing important nuclear structure parameters. We show that the recent COHERENT data offers unique opportunities to investigate the neutron nuclear form factor. Our present calculations are based on the deformed Shell Model (DSM) method which leads to a better fit of the recent CE nu NS data, as compared to known phenomenological form factors such as the Helm-type, symmetrized Fermi and Klein-Nystrand. The attainable sensitivities and the prospects of improvement during the next phase of the COHERENT experiment are also considered and analyzed in the framework of two upgrade scenarios.  
  Address [Papoulias, D. K.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: dipapou@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000503832500014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4244  
Permanent link to this record
 

 
Author Majumdar, A.; Papoulias, D.K.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Physics implications of recent Dresden-II reactor data Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 093010 - 14pp  
  Keywords  
  Abstract (up) Prompted by the recent Dresden-II reactor data, we examine its implications for the determination of the weak mixing angle, paying attention to the effect of the quenching function. We also determine the resulting constraints on the unitarity of the neutrino mixing matrix, as well as on the most general type of nonstandard neutral-current neutrino interactions.  
  Address [Majumdar, Anirban; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: anirban19@iiserb.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000917769000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5469  
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K. url  doi
openurl 
  Title Axionlike particles searches in reactor experiments Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 294 - 38pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract (up) Reactor neutrino experiments provide a rich environment for the study of axionlike particles (ALPs). Using the intense photon flux produced in the nuclear reactor core, these experiments have the potential to probe ALPs with masses below 10MeV. We explore the feasibility of these searches by considering ALPs produced through Primakoff and Compton-like processes as well as nuclear transitions. These particles can subsequently interact with the material of a nearby detector via inverse Primakoff and inverse Compton-like scatterings, via axio-electric absorption, or they can decay into photon or electron-positron pairs. We demonstrate that reactor-based neutrino experiments have a high potential to test ALP-photon couplings and masses, currently probed only by cosmological and astrophysical observations, thus providing complementary laboratory-based searches. We furthermore show how reactor facilities will be able to test previously unexplored regions in the similar to MeV ALP mass range and ALP-electron couplings of the order of gaee similar to 10(-8) as well as ALP-nucleon couplings of the order of g (1) ann similar to 10(-9), testing regions beyond TEXONO and Borexino limits.  
  Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espa 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636459500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4793  
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; De Romeri, V.; Flores, L.J.; Papoulias, D.K. url  doi
openurl 
  Title Light vector mediators facing XENON1T data Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 809 Issue Pages 135681 - 5pp  
  Keywords  
  Abstract (up) Recently the XENON1T collaboration has released new results on searches for new physics in low-energy electronic recoils. The data shows an excess over background in the low-energy tail, particularly pronounced at about 2-3 keV. With an exposure of 0.65 tonne-year, large detection efficiency and energy resolution, the detector is sensitive as well to solar neutrino backgrounds, with the most prominent contribution given by pp neutrinos. We investigate whether such signal can be explained in terms of new neutrino interactions with leptons mediated by a light vector particle. We find that the excess is consistent with this interpretation for vector masses below less than or similar to 0.1 MeV. The region of parameter space probed by the XENON1T data is competitive with constraints from laboratory experiments, in particular GEMMA, Borexino and TEXONO. However we point out a severe tension with astrophysical bounds and cosmological observations.  
  Address [Sierra, D. Aristizabal] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-5,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000581871500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4602  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva