toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bejarano, C.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Palatini wormholes and energy conditions from the prism of general relativity Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 11 Pages 776 - 13pp  
  Keywords  
  Abstract (down) Wormholes are hypothetical shortcuts in space-time that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side.  
  Address [Bejarano, Cecilia] CONICET UBA, IAFE, Casilla Correo 67,Sucursal 28, RA-1428 Buenos Aires, DF, Argentina, Email: cbejarano@iafe.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415697400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3372  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.; Rustam, A. url  doi
openurl 
  Title Structure and stability of traversable thin-shell wormholes in Palatini f(R) gravity Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 10 Pages 104012 - 11pp  
  Keywords  
  Abstract (down) We study the structure and stability of traversable wormholes built as (spherically symmetric) thin shells in the context of Palatini f(R) gravity. Using a suitable junction formalism for these theories we find that the effective number of degrees of freedom on the shell is reduced to a single one, which fixes the equation of state to be that of massless stress-energy fields, contrary to the general relativistic and metric f(R) cases. Another major difference is that the surface energy density threading the thin shell, needed in order to sustain the wormhole, can take any sign and may even vanish, depending on the desired features of the corresponding solutions. We illustrate our results by constructing thin-shell wormholes by surgically grafting Schwarzschild space-times and show that these configurations are always linearly unstable. However, surgically joined Reissner-Nordstrom space-times allow for linearly stable, traversable thin-shell wormholes supported by a positive energy density provided that the (squared) mass-to-charge ratio, given by y = Q(2)/M-2, satisfies the constraint 1 < y < 9/8 (corresponding to overcharged Reissner-Nordstrom configurations having a photon sphere) and lies in a region bounded by specific curves defined in terms of the (dimensionless) radius of the shell x(0) = R/M.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, Edificio C8,Campo Grande, P-1749016 Lisbon, Portugal, Email: fslobo@fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000587286200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4596  
Permanent link to this record
 

 
Author Barrientos, E.; Lobo, F.S.N.; Mendoza, S.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Metric-affine f(R,T) theories of gravity and their applications Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 10 Pages 104041 - 10pp  
  Keywords  
  Abstract (down) We study f (R, T) theories of gravity, where T is the trace of the energy-momentum tensor T-mu v, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f(R) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservation of the energy-momentum tensor, which implies nongeodesic motion arid consequently leads to the appearance of an extra force. The weak field limit leads to a modified Poisson equation formally identical to that found in Eddington-inspired Born-Infeld gravity. Furthermore, the coupling of these gravity theories to perfect fluids, electromagnetic, and scalar fields, and their potential applications arc discussed.  
  Address [Barrientos, E.; Mendoza, S.] Univ Nacl Autonoma Mexico, Inst Astron, AP 70-264, Ciudad De Mexico 04510, Mexico, Email: ebarrientos@astro.unam.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433036500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3585  
Permanent link to this record
 

 
Author Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Coupling matter in modified Q gravity Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 8 Pages 084043 - 13pp  
  Keywords  
  Abstract (down) We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theories where the nonmetricity Q is nonminimally coupled to the matter Lagrangian. More specifically, we consider a Lagrangian of the form L similar to f(1)(Q) + f(2)(Q)L-M, where f(1) and f(2) are generic functions of Q, and L-M is the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. The formulation of the gravity sector in terms of the Q instead of the curvature may result in subtle improvements of the theory. In the context of nonminimal matter couplings, we are therefore motivated to explore whether the new geometrical formulation in terms of the Q, when implemented also in the matter sector, would allow more universally consistent and viable realizations of the nonminimal coupling. Furthermore, we consider several cosmological applications by presenting the evolution equations and imposing specific functional forms of the functions f(1)(Q) and f(2)(Q), such as power-law and exponential dependencies of the nonminimal couplings. Cosmological solutions are considered in two general classes of models, and found to feature accelerating expansion at late times.  
  Address [Harko, Tiberiu] Babes Bolyai Univ, Dept Phys, Kogalniceanu St, Cluj Napoca 400084, Romania, Email: t.harko@ucl.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448458600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3789  
Permanent link to this record
 

 
Author Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 8 Pages 084016 - 5pp  
  Keywords  
  Abstract (down) We present a novel approach to modified theories of gravity which consists of adding to the Einstein-Hilbert Lagrangian an f(R) term constructed a la Palatini. Using the respective dynamically equivalent scalar-tensor representation, we show that the theory can pass the Solar System observational constraints even if the scalar field is very light. This implies the existence of a long-range scalar field, which is able to modify the cosmological and galactic dynamics but leaves the Solar System unaffected. We also verify the absence of instabilities in perturbations and provide explicit models which are consistent with local tests and lead to the late-time cosmic acceleration.  
  Address [Harko, Tiberiu] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China, Email: harko@hkucc.hku.hk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302996100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 996  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva