toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bonilla, C.; Fonseca, R.M.; Valle, J.W.F. url  doi
openurl 
  Title Consistency of the triplet seesaw model revisited Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 7 Pages 075028 - 7pp  
  Keywords  
  Abstract (up) Adding a scalar triplet to the Standard Model is one of the simplest ways of giving mass to neutrinos, providing at the same time a mechanism to stabilize the theory's vacuum. In this paper, we revisit these aspects of the type-II seesaw model pointing out that the bounded-from-below conditions for the scalar potential in use in the literature are not correct. We discuss some scenarios where the correction can be significant and sketch the typical scalar boson profile expected by consistency.  
  Address [Bonilla, Cesar; Fonseca, Renato M.; Valle, J. W. F.] CSIC Univ Valencia, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: cbonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363237400013 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2423  
Permanent link to this record
 

 
Author Fonseca, R.M.; Grimus, W. url  doi
openurl 
  Title Classification of lepton mixing matrices from finite residual symmetries Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 033 - 54pp  
  Keywords Global Symmetries; Beyond Standard Model; Neutrino Physics  
  Abstract (up) Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on the assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.  
  Address [Fonseca, Renato M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347898400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2084  
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title Lepton number violation in 331 models Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 11 Pages 115003 - 16pp  
  Keywords  
  Abstract (up) Different models based on the extended SU(3)(C) x SU(3)(L) x U(1)(X) (331) gauge group have been proposed over the past four decades. Yet, despite being an active research topic, the status of lepton number in 331 models has not been fully addressed in the literature, and furthermore many of the original proposals can not explain the observed neutrino masses. In this paper we review the basic features of various 331 models, focusing on potential sources of lepton number violation. We then describe different modifications which can be made to the original models in order to accommodate neutrino (and charged lepton) masses.  
  Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, Parc Cient Paterna,Calle Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389026700005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2874  
Permanent link to this record
 

 
Author Anamiati, G.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title Quasi-Dirac neutrino oscillations Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 9 Pages 095008 - 16pp  
  Keywords  
  Abstract (up) Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.  
  Address [Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432970600004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3581  
Permanent link to this record
 

 
Author Anamiati, G.; Castillo-Felisola, O.; Fonseca, R.M.; Helo, J.C.; Hirsch, M. url  doi
openurl 
  Title High-dimensional neutrino masses Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 066 - 26pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract (up) For Majorana neutrino masses the lowest dimensional operator possible is the Weinberg operator at d = 5. Here we discuss the possibility that neutrino masses originate from higher dimensional operators. Specifically, we consider all tree-level decompositions of the d = 9, d = 11 and d = 13 neutrino mass operators. With renormalizable interactions only, we find 18 topologies and 66 diagrams for d = 9, and 92 topologies plus 504 diagrams at the d = 11 level. At d = 13 there are already 576 topologies and 4199 diagrams. However, among all these there are only very few genuine neutrino mass models: At d = (9, 11, 13) we find only (2,2,2) genuine diagrams and a total of (2,2,6) models. Here, a model is considered genuine at level d if it automatically forbids lower order neutrino masses without the use of additional symmetries. We also briefly discuss how neutrino masses and angles can be easily fitted in these high-dimensional models.  
  Address [Anamiati, Gaetana; Hirsch, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453296100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3845  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva