toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caputo, A.; Liu, H.W.; Mishra-Sharma, S.; Ruderman, J.T. url  doi
openurl 
  Title Dark Photon Oscillations in Our Inhomogeneous Universe Type Journal Article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 125 Issue 22 Pages 221303 - 8pp  
  Keywords  
  Abstract (up) A dark photon kinetically mixing with the ordinary photon represents one of the simplest viable extensions to the standard model, and would induce oscillations with observable imprints on cosmology. Oscillations are resonantly enhanced if the dark photon mass equals the ordinary photon plasma mass, which tracks the free electron number density. Previous studies have assumed a homogeneous Universe; in this Letter, we introduce for the first time an analytic formalism for treating resonant oscillations in the presence of inhomogeneities of the photon plasma mass. We apply our formalism to determine constraints from cosmic microwave background photons oscillating into dark photons, and from heating of the primordial plasma due to dark photon dark matter converting into low-energy photons. Including the effect of inhomogeneities demonstrates that prior homogeneous constraints are not conservative, and simultaneously extends current experimental limits into a vast new parameter space.  
  Address [Caputo, Andrea] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000591812900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4641  
Permanent link to this record
 

 
Author Caputo, A.; Liu, H.W.; Mishra-Sharma, S.; Ruderman, J.T. url  doi
openurl 
  Title Modeling dark photon oscillations in our inhomogeneous Universe Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 10 Pages 103533 - 26pp  
  Keywords  
  Abstract (up) A dark photon may kinetically mix with the Standard Model photon, leading to observable cosmological signatures. The mixing is resonantly enhanced when the dark photon mass matches the primordial plasma frequency, which depends sensitively on the underlying spatial distribution of electrons. Crucially, inhomogeneities in this distribution can have a significant impact on the nature of resonant conversions. We develop and describe, for the first time, a general analytic formalism to treat resonant oscillations in the presence of inhomogeneities. Our formalism follows from the theory of level crossings of random fields and only requires knowledge of the one-point probability density function (PDF) of the underlying electron number density fluctuations. We validate our formalism using simulations and illustrate the photon-to-dark photon conversion probability for several different choices of PDFs that are used to characterize the low-redshift Universe.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000591810800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4621  
Permanent link to this record
 

 
Author Caputo, A.; Hernandez, P.; Lopez-Pavon, J.; Salvado, J. url  doi
openurl 
  Title The seesaw portal in testable models of neutrino masses Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 112 - 20pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract (up) A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, d = 5, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two displaced vertices. We estimate the LHC reach to this process.  
  Address [Caputo, A.; Hernandez, P.; Salvado, J.] Univ Valencia, Inst Fis Corpusc, Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: andrea.caputo@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404625300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3196  
Permanent link to this record
 

 
Author Caputo, A.; Hernandez, P.; Rius, N. url  doi
openurl 
  Title Leptogenesis from oscillations and dark matter Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 7 Pages 574 - 17pp  
  Keywords  
  Abstract (up) An extension of the Standard Model with Majorana singlet fermions in the 1-100GeV range can explain the light neutrino masses and give rise to a baryon asymmetry at freeze-in of the heavy states, via their CP-violating oscillations. In this paper we consider extending this scenario to also explain dark matter. We find that a very weakly coupled B-L gauge boson, an invisible QCD axion model, and the singlet majoron model can simultaneously account for dark matter and the baryon asymmetry.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000475617900002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4090  
Permanent link to this record
 

 
Author Caputo, A.; Zavala, J.; Blas, D. url  doi
openurl 
  Title Binary pulsars as probes of a Galactic dark matter disk Type Journal Article
  Year 2018 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 19 Issue Pages 1-11  
  Keywords Dark disk; Binary pulsar  
  Abstract (up) As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn >> 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn << 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn similar to 1.  
  Address [Caputo, Andrea; Blas, Diego] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428024400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3527  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva