toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Bonilla, C., Nebot, M., Valle, J. W. F., & Srivastava, R. (2016). Flavor physics scenario for the 750 GeV diphoton anomaly. Phys. Rev. D, 93(7), 073009–5pp.
toggle visibility
Bonilla, C., Fonseca, R. M., & Valle, J. W. F. (2015). Consistency of the triplet seesaw model revisited. Phys. Rev. D, 92(7), 075028–7pp.
toggle visibility
Bonilla, C., Morisi, S., Peinado, E., & Valle, J. W. F. (2015). Relating quarks and leptons with the T-7 flavour group. Phys. Lett. B, 742, 99–106.
toggle visibility
Bonilla, C., Romao, J. C., & Valle, J. W. F. (2016). Electroweak breaking and neutrino mass: `invisible' Higgs decays at the LHC (type II seesaw). New J. Phys., 18, 033033–21pp.
toggle visibility
Bonilla, C., Romao, J. C., & Valle, J. W. F. (2015). Neutrino mass and invisible Higgs decays at the LHC. Phys. Rev. D, 91(11), 113015–7pp.
toggle visibility
Bonilla, C., Herms, J., Medina, O., & Peinado, E. (2023). Discrete dark matter mechanism as the source of neutrino mass scales. J. High Energy Phys., 06(6), 078–23pp.
toggle visibility
Bonilla, C., Fonseca, R. M., & Valle, J. W. F. (2016). Vacuum stability with spontaneous violation of lepton number. Phys. Lett. B, 756, 345–349.
toggle visibility
Alvarado, C., Bonilla, C., Leite, J., & Valle, J. W. F. (2021). Phenomenology of fermion dark matter as neutrino mass mediator with gauged B-L. Phys. Lett. B, 817, 136292–12pp.
toggle visibility
Bonilla, C., Krauss, M. E., Opferkuch, T., & Porod, W. (2017). Perspectives for detecting lepton flavour violation in left-right symmetric models. J. High Energy Phys., 03(3), 027–50pp.
toggle visibility
Aranda, A., Bonilla, C., Morisi, S., Peinado, E., & Valle, J. W. F. (2014). Dirac neutrinos from flavor symmetry. Phys. Rev. D, 89(3), 033001–5pp.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva