toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cole, P.S.; Bertone, G.; Coogan, A.; Gaggero, D.; Karydas, T.; Kavanagh, B.J.; Spieksma, T.F.M.; Tomaselli, G.M. url  doi
openurl 
  Title Distinguishing environmental effects on binary black hole gravitational waveforms Type Journal Article
  Year 2023 Publication Nature Astronomy Abbreviated Journal Nat. Astron.  
  Volume 7 Issue 8 Pages 943-950  
  Keywords  
  Abstract (up) A Bayesian approach to comparing the effects of accretion disks, dark matter or clouds of ultra-light bosons on gravitational waveforms from a black hole binary system concludes that detectors such as LISA can distinguish between these environments. Future gravitational wave interferometers such as the Laser Interferometer Space Antenna, Taiji, DECi-hertz Interferometer Gravitational wave Observatory and TianQin will enable precision studies of the environment surrounding black holes. These detectors will probe the millihertz frequency range, as yet unexplored by current gravitational wave detectors. Furthermore, sources will remain in band for durations of up to years, meaning that the inspiral phase of the gravitational wave signal, which can be affected by the environment, will be observable. In this paper, we study intermediate and extreme mass ratio binary black hole inspirals, and consider three possible environments surrounding the primary black hole: accretion disks, dark matter spikes and clouds of ultra-light scalar fields, also known as gravitational atoms. We present a Bayesian analysis of the detectability and measurability of these three environments. Focusing for concreteness on the case of a detection with LISA, we show that the characteristic imprint they leave on the gravitational waveform would allow us to identify the environment that generated the signal and to accurately reconstruct its model parameters.  
  Address [Cole, Philippa S.; Bertone, Gianfranco; Karydas, Theophanes; Spieksma, Thomas F. M.; Tomaselli, Giovanni Maria] Univ Amsterdam, Inst Theoret Phys Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Amsterdam, Netherlands, Email: p.s.cole@uva.nl  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3366 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001000769700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5546  
Permanent link to this record
 

 
Author Fougeres, C. et al; Domingo-Pardo, C. url  doi
openurl 
  Title Search for Na-22 in novae supported by a novel method for measuring femtosecond nuclear lifetimes Type Journal Article
  Year 2023 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 14 Issue 1 Pages 4536 - 7pp  
  Keywords  
  Abstract (up) Classical novae are thermonuclear explosions in stellar binary systems, and important sources of Al-26 and Na-22. While ? rays from the decay of the former radioisotope have been observed throughout the Galaxy, Na-22 remains untraceable. Its half-life (2.6 yr) would allow the observation of its 1.275 MeV ?-ray line from a cosmic source. However, the prediction of such an observation requires good knowledge of its nucleosynthesis. The Na-22(p, ?)Mg-23 reaction remains the only source of large uncertainty about the amount of Na-22 ejected. Its rate is dominated by a single resonance on the short-lived state at 7785.0(7) keV in Mg-23. Here, we propose a combined analysis of particle-particle correlations and velocity-difference profiles to measure femtosecond nuclear lifetimes. The application of this method to the study of the Mg-23 states, places strong limits on the amount of Na-22 produced in novae and constrains its detectability with future space-borne observatories. The authors report a particle-particle correlation and velocity-difference profile method to measure nuclear lifetime. The results obtained for excited states of 23Mg are used to constrain the production of 22Na in the astrophysical novae explosions.  
  Address [Fougeres, Chloe; Santos, Francois de Oliveira; Michelagnoli, Caterina; Clement, Emmanuel; Kim, Yung Hee; Lemasson, Antoine; Boulay, Florent; Goupil, Johan; Li, Hongjie; Navin, Alahari; Ralet, Damien; Saillant, Frederic] Grand Accelerateur Natl Ions Lourds GANIL, CEA, IN2P3, DRF CNRS, Caen, France, Email: chloe.fougeres@gmail.com;  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063751200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5671  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Observation of an exotic narrow doubly charmed tetraquark Type Journal Article
  Year 2022 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 18 Issue Pages 751-754  
  Keywords  
  Abstract (up) Conventional, hadronic matter consists of baryons and mesons made of three quarks and a quark-antiquark pair, respectively(1,2). Here, we report the observation of a hadronic state containing four quarks in the Large Hadron Collider beauty experiment. This so-called tetraquark contains two charm quarks, a (u) over bar and a (d) over tilde quark. This exotic state has a mass of approximately 3,875 MeV and manifests as a narrow peak in the mass spectrum of (DD0)-D-0 pi(+) mesons just below the D*D-+(0) mass threshold. The near-threshold mass together with the narrow width reveals the resonance nature of the state.  
  Address [Aaij, R.; Butter, J. S.; Akiba, K. Carvalho; Sole, S. Ferreres; Gabriel, E.; Geertsema, R. E.; Greeven, L. M.; Heijhoff, K.; Hulsbergen, W.; Hynds, D.; Jans, E.; Ketel, T.; Klaver, S.; Koppenburg, P.; Kostiuk, I; Kuindersma, H. S.; Martinez, M. Lucio; Lukashenko, V; Mauri, A.; Merk, M.; Pellegrino, A.; Raven, G.; Gras, C. Sanchez; Schubiger, M.; Soares, M. Senghi; Snoch, A.; Tuning, N.; Usachov, A.; Van Beuzekom, M.; Veronesi, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000811954400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5279  
Permanent link to this record
 

 
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F. url  doi
openurl 
  Title HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon Type Journal Article
  Year 2021 Publication Nature Astronomy Abbreviated Journal Nat. Astron.  
  Volume 4 Issue Pages 465–471  
  Keywords  
  Abstract (up) Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way(1,2). Traditionally, it has been presumed that supernova remnants were the main source of these very-high-energy cosmic rays(3,4), but theoretically it is difficult to accelerate protons to PeV energies(5,6) and observationally there simply is no evidence of the remnants being sources of hadrons with energies above a few tens of TeV7,8. One possible source of protons with those energies is the Galactic Centre region(9). Here, we report observations of 1-100 TeV gamma rays coming from the 'Cygnus Cocoon'(10), which is a superbubble that surrounds a region of massive star formation. These gamma rays are likely produced by 10-1,000 TeV freshly accelerated cosmic rays that originate from the enclosed star-forming region Cyg OB2. Until now it was not known that such regions could accelerate particles to these energies. The measured flux likely originates from hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.  
  Address [Abeysekara, A. U.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: rdb3@stanford.edu;  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3366 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000627714400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4763  
Permanent link to this record
 

 
Author Donini, A.; Palomares-Ruiz, S.; Salvado, J. url  doi
openurl 
  Title Neutrino tomography of Earth Type Journal Article
  Year 2019 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 15 Issue 1 Pages 37-40  
  Keywords  
  Abstract (up) Cosmic-ray interactions with the atmosphere produce a flux of neutrinos in all directions with energies extending above the TeV scale(1). The Earth is not a fully transparent medium for neutrinos with energies above a few TeV, as the neutrinonucleon cross-section is large enough to make the absorption probability non-negligible(2). Since absorption depends on energy and distance travelled, studying the distribution of the TeV atmospheric neutrinos passing through the Earth offers an opportunity to infer its density profiles(3-7). This has never been done, however, due to the lack of relevant data. Here we perform a neutrino-based tomography of the Earth using actual data-one-year of through-going muon atmospheric neutrino data collected by the IceCube telescope(8). Using only weak interactions, in a way that is completely independent of gravitational measurements, we are able to determine the mass of the Earth and its core, its moment of inertia, and to establish that the core is denser than the mantle. Our results demonstrate the feasibility of this approach to study the Earth's internal structure, which is complementary to traditional geophysics methods. Neutrino tomography could become more competitive as soon as more statistics is available, provided that the sources of systematic uncertainties are fully under control.  
  Address [Donini, Andrea; Palomares-Ruiz, Sergio; Salvado, Jordi] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: sergiopr@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454733100017 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3863  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of matter-antimatter differences in beauty baryon decays Type Journal Article
  Year 2017 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 13 Issue 4 Pages 391-396  
  Keywords  
  Abstract (up) Differences in the behaviour of matter and antimatter have been observed in K and B meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined chargeconjugation and parity transformations, known as CP violation. Here, using data from the LHCb experiment at the Large Hadron Collider, we search for CP-violating asymmetries in the decay angle distributions of A(b)(0) baryons decaying to p pi(-)pi(+)pi(-) and p pi-K+K- final states. These four-body hadronic decays are a promising place to search for sources of CP violation both within and beyond the standard model of particle physics. We find evidence for CP violation in A(b)(0) to p pi(-)pi(+)pi(-) decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for CP violation in the baryon sector.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000398262900020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3170  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O. url  doi
openurl 
  Title Search for magnetic monopoles produced via the Schwinger mechanism Type Journal Article
  Year 2022 Publication Nature Abbreviated Journal Nature  
  Volume 602 Issue 7895 Pages 63-67  
  Keywords  
  Abstract (up) Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism(1). By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist(2). Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model(3-7) but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size(8,9) and strong coupling to photons(2,10). Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe(11). It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 x 10(9), of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.  
  Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000750429600019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5191  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moreno Llacer, M.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Observation of electroweak production of two jets and a Z-boson pair Type Journal Article
  Year 2023 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 19 Issue 2 Pages 237-253  
  Keywords  
  Abstract (up) Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin 1 allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a Z-boson pair is a rare and important one. Here we report the observation of this process from proton-proton collision data corresponding to an integrated luminosity of 139fb(-1) recorded at a centre-of-mass energy of 13TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the Z-boson pair: one containing four charged leptons and another containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7 sigma, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, we report cross-sections for inclusive production of a Z-boson pair and two jets for the two final states.  
  Address [Aad, G.; Barbero, M.; Bartolini, G.; Brahimi, N.; Calandri, A.; Coadou, Y.; Corga, K. De Vasconcelos; Diaconu, C.; Djama, F.; Duperrin, A.; El Kosseifi, R.; Feligioni, L.; Guo, Z.; Hallewell, G. D.; Hubaut, F.; Knoops, E. B. F. G.; Kukla, R.; Le Guirriec, E.; Monnier, E.; Muanza, S.; Nagy, E.; Nguyen, H. D. N.; Petit, E.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Wolff, R.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: atlas.publications@cern.ch  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001005403200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5598  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays Type Journal Article
  Year 2015 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 11 Issue 9 Pages 743-747  
  Keywords  
  Abstract (up) In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron Collider, the probability for the Lambda(0)(b) baryon to decay into the p mu(-)(nu) over bar (mu) final state relative to the Lambda(+)(c)mu(-)(nu) over bar (mu) final state is measured. Combined with theoretical calculations of the strong interaction and a previously measured value of vertical bar V-ub vertical bar, the first vertical bar V-ub vertical bar measurement to use a baryonic decay is performed. This measurement is consistent with previous determinations of vertical bar V-ub vertical bar using B meson decays to specific final states and confirms the existing incompatibility with those using an inclusive sample of final states.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; Rodrigues, B. Osorio; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: u.egede@imperial.ac.uk  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000360709200018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2388  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Search for charged-lepton-flavour violation in Z-boson decays with the ATLAS detector Type Journal Article
  Year 2021 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 17 Issue Pages 819-825  
  Keywords  
  Abstract (up) Leptons with essentially the same properties apart from their mass are grouped into three families (or flavours). The number of leptons of each flavour is conserved in interactions, but this is not imposed by fundamental principles. Since the formulation of the standard model of particle physics, the observation of flavour oscillations among neutrinos has shown that lepton flavour is not conserved in neutrino weak interactions. So far, there has been no experimental evidence that this also occurs in interactions between charged leptons. Such an observation would be a sign of undiscovered particles or a yet unknown type of interaction. Here the ATLAS experiment at the Large Hadron Collider at CERN reports a constraint on lepton-flavour-violating effects in weak interactions, searching for Z-boson decays into a tau lepton and another lepton of different flavour with opposite electric charge. The branching fractions for these decays are measured to be less than 8.1 x 10(-6) (e tau) and 9.5 x 10(-6) (mu tau) at the 95% confidence level using 139 fb(-1) of proton-proton collision data at a centre-of-mass energy of root s = 13 TeV and 20.3 fb(-1) at root s = 8 TeV. These results supersede the limits from the Large Electron-Positron Collider experiments conducted more than two decades ago.  
  Address [Aad, G.; Barbero, M.; Bartolini, G.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Djama, F.; Duperrin, A.; Feligioni, L.; Fortin, E.; Guo, Z.; Hallewell, G. D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Monnier, E.; Muanza, S.; Nagy, E.; Nguyen, H. D. N.; Petit, E.; Pralavorio, P.; Rozanov, A.; Strebler, T.; Talby, M.; Tisserant, S.; Toth, J.; Vu, N. K.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France, Email: atlas.publications@cern.ch  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000668820400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4892  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva