toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Black, K.M. et al; Zurita, J. url  doi
openurl 
  Title Muon Collider Forum report Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages T02015 - 95pp  
  Keywords Accelerator Applications; Accelerator Subsystems and Technologies; Instrumentation for particle accelerators and storage rings- high energy (linear accelerators, synchrotrons); Large detector systems for particle and astroparticle physics  
  Abstract (up) A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.  
  Address [Black, K. M.; Bose, T.; Dasu, S.; Everaerts, P.; Jia, H.; Lomte, S.; Pinna, D.; Venkatasubramanian, N.; Vuosalo, C.] Univ Wisconsin Madison, Madison, WI USA, Email: sergo@fnal.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185309300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6048  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for a correlation between ANTARES neutrinos and Pierre Auger Observatory UHECRs arrival directions Type Journal Article
  Year 2013 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 774 Issue 1 Pages 19 - 7pp  
  Keywords astroparticle physics; cosmic rays; neutrinos  
  Abstract (up) A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E-2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 x 10(-8) GeV cm(-2) s(-1) per source is derived.  
  Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Camarena, F.; Ferri, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gesti Integrada Zones Costanere IGIC, E-46730 Gandia, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000323426700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1565  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Model-independent search for neutrino sources with the ANTARES neutrino telescope Type Journal Article
  Year 2020 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 114 Issue Pages 35-47  
  Keywords Neutrino astronomy; Astroparticle physics; Pattern recognition; Anisotropy  
  Abstract (up) A novel method to analyse the spatial distribution of neutrino candidates recorded with the ANTARES neutrino telescope is introduced, searching for an excess of neutrinos in a region of arbitrary size and shape from any direction in the sky. Techniques originating from the domains of machine learning, pattern recognition and image processing are used to purify the sample of neutrino candidates and for the analysis of the obtained skymap. In contrast to a dedicated search for a specific neutrino emission model, this approach is sensitive to a wide range of possible morphologies of potential sources of high-energy neutrino emission. The application of these methods to ANTARES data yields a large-scale excess with a post-trial significance of 2.5 sigma. Applied to public data from IceCube in its IC40 configuration, an excess consistent with the results from ANTARES is observed with a post-trial significance of 2.1 sigma.  
  Address [Albert, A.; Drouhin, D.; Racca, C.; Saldana, M.] Univ Haute Alsace, Inst Univ Technol Colmar, GRPHE, 34 Rue Grillenbreit,BP Colmar 50568, F-68008 Mulhouse, France, Email: stefan.geisselsoeder@fau.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000489353300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4167  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope Type Journal Article
  Year 2014 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 786 Issue 1 Pages L5 - 5pp  
  Keywords astroparticle physics; Galaxy: center; neutrinos  
  Abstract (up) A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = -46 degrees.8 and decl. = -64 degrees.9 and corresponds to a 2.2 sigma background fluctuation. In addition, upper limits on the flux normalization of an E-2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E-2 energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 x 10(-8) GeV cm(-2) s(-1), depending on the exact location of the source.  
  Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gesti Integrada Zones Costanere IGIC, E-46730 Gandia, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334929600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1767  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title Large-scale distribution of arrival directions of cosmic rays detected above 10^18 eV at the Pierre Auger Observatory Type Journal Article
  Year 2012 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.  
  Volume 203 Issue 2 Pages 34 - 20pp  
  Keywords astroparticle physics; cosmic rays  
  Abstract (up) A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.  
  Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0067-0049 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312100500018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1272  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title Constraints on the origin of cosmic rays above 10^18 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory Type Journal Article
  Year 2013 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 762 Issue 1 Pages L13 - 8pp  
  Keywords astroparticle physics; cosmic rays  
  Abstract (up) A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(18) eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.  
  Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312488400013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1279  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 500 Issue 4 Pages 5614-5628  
  Keywords acceleration of particles; neutrinos; transients: gamma-ray bursts; astroparticle physics  
  Abstract (up) Addressing the origin of the astrophysical neutrino flux observed by IceCube is of paramount importance. Gamma-Ray Bursts (GRBs) are among the few astrophysical sources capable of achieving the required energy to contribute to such neutrino flux through p gamma interactions. In this work, ANTARFS data have been used to search for upward going muon neutrinos in spatial and temporal coincidence with 784 GRBs occurred from 2007 to 2017. For each GRB, the expected neutrino flux has been calculated in the framework of the internal shock model and the impact of the lack of knowledge on the majority of source redshifts and on other intrinsic parameters of the emission mechanism has been quantified. It is found that the model parameters that set the radial distance where shock collisions occur have the largest impact on neutrino flux expectations. In particular, the bulk Lorentz factor of the source ejecta and the minimum variability time-scale are found to contribute significantly to the GRB-neutrino flux uncertainty. For the selected sources, ANTARES data have been analysed by maximizing the discovery probability of the stacking sample through an extended maximum-likelihood strategy. Since no neutrino event passed the quality cuts set by the optimization procedure, 90 per cent confidence level upper limits (with their uncertainty) on the total expected diffuse neutrino flux have been derived, according to the model. The GRB contribution to the observed diffuse astrophysical neutrino flux around 100 TeV is constrained to be less than 10 percent.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: silvia.celli@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606297700092 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4677  
Permanent link to this record
 

 
Author Gammaldi, V.; Zaldivar, B.; Sanchez-Conde, M.A.; Coronado-Blazquez, J. url  doi
openurl 
  Title A search for dark matter among Fermi-LAT unidentified sources with systematic features in machine learning Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 520 Issue 1 Pages 1348-1361  
  Keywords astroparticle physics – methods; data analysis – methods; observational – methods; statistical – dark matter – gamma-rays; general  
  Abstract (up) Around one-third of the point-like sources in the Fermi-LAT catalogues remain as unidentified sources (unIDs) today. Indeed, these unIDs lack a clear, univocal association with a known astrophysical source. If dark matter (DM) is composed of weakly interacting massive particles (WIMPs), there is the exciting possibility that some of these unIDs may actually be DM sources, emitting gamma-rays from WIMPs annihilation. We propose a new approach to solve the standard, machine learning (ML) binary classification problem of disentangling prospective DM sources (simulated data) from astrophysical sources (observed data) among the unIDs of the 4FGL Fermi-LAT catalogue. We artificially build two systematic features for the DM data which are originally inherent to observed data: the detection significance and the uncertainty on the spectral curvature. We do it by sampling from the observed population of unIDs, assuming that the DM distributions would, if any, follow the latter. We consider different ML models: Logistic Regression, Neural Network (NN), Naive Bayes, and Gaussian Process, out of which the best, in terms of classification accuracy, is the NN, achieving around 93 . 3 per cent +/- 0 . 7 per cent performance. Other ML evaluation parameters, such as the True Ne gativ e and True Positive rates, are discussed in our work. Applying the NN to the unIDs sample, we find that the de generac y between some astrophysical and DM sources can be partially solved within this methodology. None the less, we conclude that there are no DM source candidates among the pool of 4FGL Fermi-LAT unIDs.  
  Address [Gammaldi, V; Sanchez-Conde, M. A.; Coronado-Blazquez, J.] Univ Autonoma Madrid, Departamentode Fis Teor, E-28049 Madrid, Spain, Email: viviana.gammaldi@uam.es;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000937053400014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5489  
Permanent link to this record
 

 
Author Panes, B.; Eckner, C.; Hendriks, L.; Caron, S.; Dijkstra, K.; Johannesson, G.; Ruiz de Austri, R.; Zaharijas, G. url  doi
openurl 
  Title Identification of point sources in gamma rays using U-shaped convolutional neural networks and a data challenge Type Journal Article
  Year 2021 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 656 Issue Pages A62 - 18pp  
  Keywords catalogs; gamma rays: general; astroparticle physics; methods: numerical; methods: data analysis; techniques: image processing  
  Abstract (up) Context. At GeV energies, the sky is dominated by the interstellar emission from the Galaxy. With limited statistics and spatial resolution, accurately separating point sources is therefore challenging. Aims. Here we present the first application of deep learning based algorithms to automatically detect and classify point sources from gamma-ray data. For concreteness we refer to this approach as AutoSourceID. Methods. To detect point sources, we utilized U-shaped convolutional networks for image segmentation and k-means for source clustering and localization. We also explored the Centroid-Net algorithm, which is designed to find and count objects. Using two algorithms allows for a cross check of the results, while a combination of their results can be used to improve performance. The training data are based on 9.5 years of exposure from The Fermi Large Area Telescope (Fermi-LAT) and we used source properties of active galactic nuclei (AGNs) and pulsars (PSRs) from the fourth Fermi-LAT source catalog in addition to several models of background interstellar emission. The results of the localization algorithm are fed into a classification neural network that is trained to separate the three general source classes (AGNs, PSRs, and FAKE sources). Results. We compared our localization algorithms qualitatively with traditional methods and find them to have similar detection thresholds. We also demonstrate the robustness of our source localization algorithms to modifications in the interstellar emission models, which presents a clear advantage over traditional methods. The classification network is able to discriminate between the three classes with typical accuracy of similar to 70%, as long as balanced data sets are used in classification training. We published online our training data sets and analysis scripts and invite the community to join the data challenge aimed to improve the localization and classification of gamma-ray point sources.  
  Address [Panes, Boris] Pontificia Univ Catolica Chile, Ave Vicuna Mackenna 4860, Macul, Region Metropol, Chile, Email: bapanes@gmail.com  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000725877600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5053  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Calvo Diaz-Aldagalan, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. doi  openurl
  Title Expansion cone for the 3-inch PMTs of the KM3NeT optical modules Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages T03006 - 20pp  
  Keywords Optical detector readout concepts; Instrument optimisation; Cherenkov detectors; Large detector systems for particle and astroparticle physics  
  Abstract (up) Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.  
  Address Univ Aberdeen, Aberdeen, Scotland, Email: o.kavatsyuk@rug.nl  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000316990700051 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1391  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva