toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Valdes-Cortez, C.; Ballester, F.; Vijande, J.; Gimenez, V.; Gimenez-Alventosa, V.; Perez-Calatayud, J.; Niatsetski, Y.; Andreo, P. doi  openurl
  Title Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya(R) unit: a Monte Carlo study Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 24 Pages 245026 - 12pp  
  Keywords electronic brachytherapy; eBT; dosimetry; ionization chamber; Monte Carlo  
  Abstract (down) Three different correction factors for measurements with the parallel-plate ionization chamber PTW T34013 on the Esteya electronic brachytherapy unit have been investigated. This chamber type is recommended by AAPM TG-253 for depth-dose measurements in the 69.5 kV x-ray beam generated by the Esteya unit. Monte Carlo simulations using the PENELOPE-2018 system were performed to determine the absorbed dose deposited in water and in the chamber sensitive volume at different depths with a Type A uncertainty smaller than 0.1%. Chamber-to-chamber differences have been explored performing measurements using three different chambers. The range of conical applicators available, from 10 to 30 mm in diameter, has been explored. Using a depth-independent global chamber perturbation correction factor without a shift of the effective point of measurement yielded differences between the absorbed dose to water and the corrected absorbed dose in the sensitive volume of the chamber of up to 1% and 0.6% for the 10 mm and 30 mm applicators, respectively. Calculations using a depth-dependent perturbation factor, including or excluding a shift of the effective point of measurement, resulted in depth-dose differences of about +/- 0.5% or less for both applicators. The smallest depth-dose differences were obtained when a shift of the effective point of measurement was implemented, being displaced 0.4 mm towards the center of the sensitive volume of the chamber. The correction factors were obtained with combined uncertainties of 0.4% (k = 2). Uncertainties due to chamber-to-chamber differences are found to be lower than 2%. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each electronic brachytherapy device and ionization chamber used for its dosimetry.  
  Address [Valdes-Cortez, Christian; Ballester, Facundo; Vijande, Javier] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: cvalcort@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000618031500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4708  
Permanent link to this record
 

 
Author Perez-Calatayud, J.; Ballester, F.; Tedgren, C.; DeWerd, L.A.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Vijande, J. doi  openurl
  Title GEC-ESTRO ACROP recommendations on calibration and traceability of HE HDR-PDR photon-emitting brachytherapy sources at the hospital level Type Journal Article
  Year 2022 Publication Radiotherapy and Oncology Abbreviated Journal Radiother. Oncol.  
  Volume 176 Issue Pages 108-117  
  Keywords Brachytherapy; High energy; Calibration; Dosimetry; HDR-PDR  
  Abstract (down) The vast majority of radiotherapy departments in Europe using brachytherapy (BT) perform temporary implants of high-or pulsed-dose rate (HDR-PDR) sources with photon energies higher than 50 keV. Such techniques are successfully applied to diverse pathologies and clinical scenarios. These recommen-dations are the result of Working Package 21 (WP-21) initiated within the BRAchytherapy PHYsics Quality Assurance System (BRAPHYQS) GEC-ESTRO working group with a focus on HDR-PDR source cal-ibration. They provide guidance on the calibration of such sources, including practical aspects and issues not specifically accounted for in well-accepted societal recommendations, complementing the BRAPHYQS WP-18 Report dedicated to low energy BT photon emitting sources (seeds). The aim of this report is to provide a European-wide standard in HDR-PDR BT source calibration at the hospital level to maintain high quality patient treatments.  
  Address [Perez-Calatayud, Jose] La Fe Hosp, Radiotherapy Dept, Valencia, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Ireland Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8140 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000880438000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5466  
Permanent link to this record
 

 
Author Palomo, R.; Pujades, M.C.; Gimeno-Olmos, J.; Carmona, V.; Lliso, F.; Candela-Juan, C.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title Evaluation of lens absorbed dose with Cone Beam IGRT procedures Type Journal Article
  Year 2015 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 35 Issue 4 Pages N33-N41  
  Keywords IGRT; CBCT; lens absorbed dose; TLD  
  Abstract (down) The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v. 1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71 +/- 0.07 mGy/CBCT and 0.70 +/- 0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.  
  Address [Palomo, R.; Gimeno-Olmos, J.; Carmona, V.; Lliso, F.; Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ, Dept Radiotherapy, Phys Sect, E-46026 Valencia, Spain, Email: mpuclau@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000366388500002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2494  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title Transit dose comparisons for Co-60 and Ir-192 HDR sources Type Journal Article
  Year 2016 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 36 Issue 4 Pages 858-864  
  Keywords Monte Carlo; dosimetry; HDR brachytherapy; transit dose  
  Abstract (down) The goal of this study is to evaluate the ambient dose due to the transit of high dose rate (HDR) Co-60 sources along a transfer tube as compared to Ir-192 ones in a realistic clinical scenario. This goal is accomplished by evaluating air-kerma differences with Monte Carlo calculations using PENELOPE2011. Scatter from both the afterloader and the patient was not taken into account. Two sources, mHDR-v2 and Flexisource Co-60, (Elekta Brachytherapy, Veenendaal, the Netherlands) have been considered. These sources were simulated within a standard transfer tube located in an infinite air phantom. The movement of the source was included by displacing their positions along the connecting tube from z = – 75 cm to z = + 75 cm and combining them. Since modern afterloaders like Flexitron (Elekta) or Saginova (BEBIG GmbH) are able to use equally 192Ir and 60Co sources, it was assumed that both sources are displaced with equal speed. Typical HDR source activity content values were provided by the manufacturer. 2D distributions were obtained with type-A uncertainties (k = 2) less than 0.01%. From those, the air-kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding typical activities. It was found that it varies slowly with distance (less than 10% variation at 75 cm) but strongly in time due to the shorter half-life of the 192Ir (73.83 d). The maximum ratio is located close to the tube. It reaches a value of 0.57 when the typical activity of the sources at the time when they were installed by the vendor was used. Such ratio increases up to 1.28 at the end of the recommended working life (90 d) of the Ir-192 source. Co-60/Ir-192 air-kerma ratios are almost constant (0.51-0.57) in the vicinity of the source-tube with recent installed sources. Nevertheless, air-kerma ratios increase rapidly (1.15-1.29) whenever the Ir-192 is approaching the end of its life. In case of a medical event requiring the medical staff to access the treatment room, these ratios indicate that the dosimetric impact on the medical team will be lower, with a few exceptions, in the case of Co-60-based HDR brachytherapy as compared to Ir-192-based one when typical air-kerma strength values are considered.  
  Address [Gimenez-Alventosa, Vicent; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386436100002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2839  
Permanent link to this record
 

 
Author Vijande, J.; Granero, D.; Perez-Calatayud, J.; Ballester, F. doi  openurl
  Title Monte Carlo dosimetric study of the medium dose rate CSM40 source Type Journal Article
  Year 2013 Publication Applied Radiation and Isotopes Abbreviated Journal Appl. Radiat. Isot.  
  Volume 82 Issue Pages 283-288  
  Keywords Brachytherapy; Cs-137 seed; TG-43 based dosimetry; Monte Carlo  
  Abstract (down) The Cs-137 medium dose rate (MDR) CSM40 source model (Eckert & Ziegler BEBIG, Germany) is in clinical use but no dosimetric dataset has been published. This study aims to obtain dosimetric data for the CSM40 source for its use in clinical practice as required by the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO). Penelope2008 and Geant4 Monte Carlo codes were used to characterize this source dosimetrically. It was located in an unbounded water phantom with composition and mass density as recommended by AAPM and ESTRO. Due to the low photon energies of Cs-137, absorbed dose was approximated by collisional kerma. Additional simulations were performed to obtain the air-kerma strength, sic. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Results performed with both radiation transport codes showed agreement typically within 0.05%. Dose rate constant, radial dose function and anisotropy function are provided for the CSM40 and compared with published data for other commercially available Cs-137 sources. An uncertainty analysis has been performed. The data provided by this study can be used as input data and verification in the treatment planning systems. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address [Vijande, J.; Ballester, F.] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: Javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000328804000043 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1678  
Permanent link to this record
 

 
Author Garcia-Cases, F.; Perez-Calatayud, J.; Ballester, F.; Vijande, J.; Granero, D. doi  openurl
  Title Peripheral dose around a mobile linac for intraoperative radiotherapy: radiation protection aspects Type Journal Article
  Year 2018 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 38 Issue 4 Pages 1393-1411  
  Keywords Mobetron; mobile electron linear accelerator; radiotherapy intraoperative  
  Abstract (down) The aim of this work is to analyse the scattered radiation produced by the mobile accelerator Mobetron 1000. To do so, detailed Monte Carlo simulations using two different codes, Penelope2008 and Geant4, were performed. Measurements were also done. To quantify the attenuation due to the internal structures, present in the accelerator head, on the scattered radiation produced, some of the main structural shielding in the Mobetron 1000 has been incorporated into the geometry simulation. Results are compared with measurements. Some discrepancies between the calculated and measured dose values were found. These differences can be traced back to the importance of the radiation component due to low energy scattered electrons. This encouraged us to perform additional calculations to separate the role played by this component. Ambient dose equivalent, H*(10), outside of the operating room (OR) has been evaluated using Geant4. H*(10) has been measured inside and outside the OR, being its values compatible with those reported in the literature once the low energy electron component is removed. With respect to the role played by neutrons, estimations of neutron H*(10) using Geant4 together with H*(10) measurements has been performed for the case of the 12 MeV electron beam. The values obtained agree with the experimental values existing in the literature, being much smaller than those registered in conventional accelerators. This study is a useful tool for the clinical user to investigate the radiation protection issues arising with the use of these accelerators in ORs without structural shielding. These results will also enable to better fix the maximum number of treatments that could be performed while insuring adequate radiological protection of workers and public in the hospital.  
  Address [Garcia-Cases, F.] Hosp Univ San Juan de Alicante, Serv Radiofis & Protecc Radiol, Alacant, Spain, Email: garcia_frad@gva.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448769200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3784  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Antunes, P.C.G.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Andreo, P. doi  openurl
  Title Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy Type Journal Article
  Year 2017 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 62 Issue 1 Pages 146-164  
  Keywords Monte Carlo; dosimetry; low-energy seed; collision-kerma; mass energy-absorption coefficients; energy-fluence correction factor  
  Abstract (down) The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).  
  Address [Gimenez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000391567700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2923  
Permanent link to this record
 

 
Author Otal, A.; Celada, F.; Chimeno, J.; Vijande, J.; Pellejero, S.; Perez-Calatayud, M.J.; Villafranca, E.; Fuentemilla, N.; Blazquez, F.; Rodriguez, S.; Perez-Calatayud, J. doi  openurl
  Title Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives Type Journal Article
  Year 2022 Publication Cancers Abbreviated Journal Cancers  
  Volume 14 Issue 14 Pages 3467 - 15pp  
  Keywords cervix; treatment planning systems; interstitial applicators; magnetic resonance  
  Abstract (down) Simple Summary There are no brachytherapy treatment planning systems (TPS) exclusively for the treatment of cervical tumours, so general-purpose TPSs are used. However, these treatments have some particular features concerning the treatment of other pathologies, especially in the case of exclusive use of MRI as an imaging modality and the presence of gynaecological applicators in combination with an interstitial part. That is why it is essential to review the latest versions of commercial TPSs to find the potential features to improve with the help of a group of experimented medical physicists and radiation oncologists. Furthermore, after reviewing the recent literature for advances applicable to cervical brachytherapy and through his own clinical experience, possible improvements are proposed to software providers for the development of new tools. Intracavitary brachytherapy (BT, Interventional Radiotherapy, IRT), plays an essential role in the curative intent of locally advanced cervical cancer, for which the conventional approach involves external beam radiotherapy with concurrent chemotherapy followed by BT. This work aims to review the different methodologies used by commercially available treatment planning systems (TPSs) in exclusive magnetic resonance imaging-based (MRI) cervix BT with interstitial component treatments. Practical aspects and improvements to be implemented into the TPSs are discussed. This review is based on the clinical expertise of a group of radiation oncologists and medical physicists and on interactive demos provided by the software manufacturers. The TPS versions considered include all the new tools currently in development for future commercial releases. The specialists from the supplier companies were asked to propose solutions to some of the challenges often encountered in a clinical environment through a questionnaire. The results include not only such answers but also comments by the authors that, in their opinion, could help solve the challenges covered in these questions. This study summarizes the possibilities offered nowadays by commercial TPSs, highlighting the absence of some useful tools that would notably improve the planning of MR-based interstitial component cervix brachytherapy.  
  Address [Otal, Antonio] Hosp Arnau Vilanova, Med Phys Dept, Lleida 25198, Spain, Email: aotalpalacin@gmail.com;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000832057600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5304  
Permanent link to this record
 

 
Author Candela-Juan, C.; Ballester, F.; Perez-Calatayud, J.; Vijande, J. url  openurl
  Title Assaying multiple I-125 seeds with the well-ionization chamber SourceCheck(4 Pi) 33005 and a new insert Type Journal Article
  Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy  
  Volume 7 Issue 6 Pages 492-496  
  Keywords brachytherapy; insert; quality assurance; prostate; seeds; well chamber  
  Abstract (down) Purpose: To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck(4 Pi) 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten I-125 seeds with one single measurement instead of measuring each seed individually. Material and methods: The material required is: a) the SourceCheck(4 Pi) 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S-K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S-K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds.The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S-K. The proposed method is validated by comparing the mean S-K of the ten seeds obtained from the new insert with the individual measurement of S-K of each seed, evaluated with the PTW insert. Results: The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck(4 Pi) 33005 is 1.135 +/- 0.007 (k = 1). The mean S-K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S-K of each seed. Conclusions: The new insert and procedure allow evaluating the mean S-K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S-K of each seed.  
  Address [Candela-Juan, Cristian; Perez-Calatayud, Jose] La Fe Univ, Dept Radiat Oncol, Phys Sect, E-46026 Valencia, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Termedia Publishing House Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1689-832x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368381300010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2533  
Permanent link to this record
 

 
Author Richart, J.; Otal, A.; Rodriguez, S.; Nicolas, A.I.; DePiaggio, M.; Santos, M.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template Type Journal Article
  Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy  
  Volume 7 Issue 5 Pages 407-414  
  Keywords brachytherapy template; catheter reconstruction; gynecological template; interstitial implants  
  Abstract (down) Purpose: There are perineal templates for interstitial implants such as MUPIT and Syed applicators. Their limitations are the intracavitary component deficit and the necessity to use computed tomography (CT) for treatment planning since both applicators are non-magnetic resonance imaging (MRI) compatibles. To overcome these problems, a new template named Template Benidorm (TB) has been recently developed. Titanium needles are usually reconstructed based on their own artifacts, mainly in T1-weighted sequence, using the void on the tip as the needle tip position. Nevertheless, patient tissues surrounding the needles present heterogeneities that complicate the accurate identification of these artifact patterns. The purpose of this work is to improve the titanium needle reconstruction uncertainty for the TB case using a simple method based on the free needle lengths and typical MRI pellets markers. Material and methods: The proposed procedure consists on the inclusion of three small A-vitamin pellets (hyper-intense on MRI images) compressed by both applicator plates defining the central plane of the plate's arrangement. The needles used are typically 20 cm in length. For each needle, two points are selected defining the straight line. From such line and the plane equations, the intersection can be obtained, and using the free length (knowing the offset distance), the coordinates of the needle tip can be obtained. The method is applied in both T1W and T2W acquisition sequences. To evaluate the inter-observer variation of the method, three implants of T1W and another three of T2W have been reconstructed by two different medical physicists with experience on these reconstructions. Results and conclusions: The differences observed in the positioning were significantly smaller than 1 mm in all cases. The presented algorithm also allows the use of only T2W sequence either for contouring or reconstruction purposes. The proposed method is robust and independent of the visibility of the artifact at the tip of the needle.  
  Address [Richart, Jose; Otal, Antonio; Rodriguez, Silvia; DePiaggio, Marina; Santos, Manuel; Perez-Calatayud, Jose] Benidorm Hosp, Dept Radiotherapy, Alicante, Spain, Email: fballest@uv.es  
  Corporate Author Thesis  
  Publisher Termedia Publishing House Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1689-832x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365247600012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2476  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva