Gonzalez, P. (2014). Generalized screened potential model. J. Phys. G, 41(9), 095001–12pp.
Abstract: A new non relativistic quark model to calculate the spectrum of heavy quark mesons is developed. The model is based on an interquark potential interaction that implicitly incorporates screening effects from meson-meson configurations. An analysis of the bottomonium spectrum shows the appearance of extra states as compared to conventional non screened potential models.
|
Gonzalez, P. (2017). A quark model study of strong decays of X(3915). J. Phys. G, 44(7), 075004–13pp.
Abstract: Strong decays of X(3915) are analyzed from two quark model descriptions of X(3915), a conventional one in terms of the Cornell potential and an unconventional one from a generalized screened potential. We conclude that the experimental suppression of the OZI allowed decay X(3915) -> D (D) over bar might be explained in both cases due to the momentum dependence of the decay amplitude. However, the experimental significance of the OZI forbidden decay X(3915) -> omega J/psi could favor an unconventional description.
|
Martin-Luna, P., Gimeno, B., Gonzalez-Iglesias, D., Boronat, M., Fuster-Martinez, N., Martinez-Reviriego, P., et al. (2024). On the magnetostatic scalar potential and magnetic field of a cylindrical magnet. Eur. J. Phys., 45(6), 065203–15pp.
Abstract: The magnetostatic potential and magnetic field of a solid and hollow cylindrical magnet is calculated everywhere in space in terms of complete elliptic integrals. These expressions are calculated using an electromagnetic analogy with the electrostatic potential and electric field of two uniformly charged disks with opposite surface density. The analogy is employed to study intuitively the discontinuities and the dipolar approximation of the fields (H) over right arrow and (B) over right arrow. The range of validity of the dipolar approximation has been studied along the cylinder axis and in the midplane perpendicular to the cylinder axis, comparing them with the obtained general expression.
|
Becker, P., Davesne, D., Meyer, J., Pastore, A., & Navarro, J. (2015). Tools for incorporating a D-wave contribution in Skyrme energy density functionals. J. Phys. G, 42(3), 034001–19pp.
Abstract: The possibility of adding a D-wave term to the standard Skyrme effective interaction has been widely considered in the past. Such a term has been shown to appear in the next-to-next-to-leading order of the Skyrme pseudo-potential. The aim of the present article is to provide the necessary tools to incorporate this term in a fitting procedure: first, a mean-field equation written in spherical symmetry in order to describe spherical nuclei and second, the response function to detect unphysical instabilities. With these tools it will be possible to build a new fitting procedure to determine the coupling constants of the new functional.
|
Ortega, P. G., Entem, D. R., & Fernandez, F. (2017). LHCb pentaquarks in constituent quark models. Phys. Lett. B, 764, 207–211.
Abstract: The recently discovered P-c(4380)(+) and P-c(4450)(+) states at LHCb have masses close to the (D) over bar Sigma(C)* and (D) over bar*Sigma(C) thresholds, respectively, which suggest that they may have significant meson-baryon molecular components. We analyze these states in the framework of a constituent quark model which has been applied to a wide range of hadronic observables, being the model parameters, therefore, completely constrained. The P-c(4380)(+) and P-c(4450)(+) are studied as molecular states composed by charmed baryons and open charm mesons. Several bound states with the proper binding energy are found in the (D) over bar Sigma(C)* and (D) over bar*Sigma(C) chennels. We discuss the possible assignments of these states from their decay widths. Moreover, two more states are predicted, associated with the (D) over bar Sigma(C) and (D) over bar*Sigma*(C) thresholds. (C) 2016 Published by Elsevier B.V.
|