|   | 
Details
   web
Records
Author NEXT Collaboration; Carcel, S.; Carrion, J.V.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 7 Pages 075001 - 17pp
Keywords gaseous detectors; scintillators; scintillation and light emission processes; solid; gas and liquid scintillators
Abstract (down) Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
Address [Rogers, L.; Jones, B. J. P.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Byrnes, N.; Dingler, R.; McDonald, A. D.; Nygren, D. R.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: leslie.rogers@mavs.uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000537753800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4423
Permanent link to this record
 

 
Author Bonilla, C.; Sokolowska, D.; Darvishi, N.; Diaz-Cruz, J.L.; Krawczyk, M.
Title IDMS: inert dark matter model with a complex singlet Type Journal Article
Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 6 Pages 065001 - 39pp
Keywords CP violation; inert doublet model; complex singlet
Abstract (down) We study an extension of the inert doublet model (IDM) that includes an extra complex singlet of the scalars fields, which we call the IDMS. In this model there are three Higgs particles, among them a SM-like Higgs particle, and the lightest neutral scalar, from the inert sector, remains a viable dark matter (DM) candidate. We assume a non-zero complex vacuum expectation value for the singlet, so that the visible sector can introduce extra sources of CP violation. We construct the scalar potential of IDMS, assuming an exact Z(2) symmetry, with the new singlet being Z(2)-even, as well as a softly broken U(1) symmetry, which allows a reduced number of free parameters in the potential. In this paper we explore the foundations of the model, in particular the masses and interactions of scalar particles for a few benchmark scenarios. Constraints from collider physics, in particular from the Higgs signal observed at the Large Hadron Collider with M-h approximate to 125 GeV, as well as constraints from the DM experiments, such as relic density measurements and direct detection limits, are included in the analysis. We observe significant differences with respect to the IDM in relic density values from additional annihilation channels, interference and resonance effects due to the extended Higgs sector.
Address [Bonilla, Cesar] Univ Valencia, CSIC, Inst Fis Corpuscular, Apdo 22085, E-46071 Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000376276900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2687
Permanent link to this record
 

 
Author Meloni, D.; Morisi, S.; Peinado, E.
Title Fritzsch neutrino mass matrix from S-3 symmetry Type Journal Article
Year 2011 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 38 Issue 1 Pages 015003 - 10pp
Keywords
Abstract (down) We present an extension of the standard model (SM) based on the discrete flavor symmetry S-3 which gives a neutrino mass matrix with two-zero texture of Fritzsch type and nearly diagonal charged lepton mass matrix. The model is compatible with the normal hierarchy only and predicts sin(2) theta(13) approximate to 0.01 at the best-fit values of solar and atmospheric parameters and maximal leptonic CP violation.
Address [Meloni, D.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: Davide.Meloni@physik.uni-wuerzburg.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes ISI:000286223700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 573
Permanent link to this record
 

 
Author Pastore, A.; Davesne, D.; Navarro, J.
Title Nuclear matter response function with a central plus tensor Landau interaction Type Journal Article
Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 41 Issue 5 Pages 055103 - 17pp
Keywords Landau; random phase approximation; phenomenological interactions; tensor
Abstract (down) We present a method to obtain response functions in the random phase approximation (RPA) based on a residual interaction described in terms of Landau parameters with central plus tensor contributions. The response functions keep the explicit momentum dependence of the RPA, in contrast with the traditional Landau approximation. Results for symmetric nuclear matter and pure neutron matter are presented using Landau parameters derived from finite-range interactions, both phenomenological and microscopic. We study the convergence of response functions as the number of Landau parameters is increased.
Address [Pastore, A.; Navarro, J.] Univ Libre Brussels, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: apastore@ulb.ac.be
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000334662500015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1750
Permanent link to this record
 

 
Author Ayala, C.; Gonzalez, P.; Vento, V.
Title Heavy quark potential from QCD-related effective coupling Type Journal Article
Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 12 Pages 125002 - 12pp
Keywords general properties of QCD; potential models; other non-perturbative calculations; heavy quarkonia
Abstract (down) We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.
Address [Gonzalez, Pedro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Pedro.Gonzalez@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000388219700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2870
Permanent link to this record