|   | 
Details
   web
Records
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Cosmic ray spectrum of protons plus helium nuclei between 6 and 158 TeV from HAWC data Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 6 Pages 063021 - 26pp
Keywords
Abstract (up) A measurement with high statistics of the differential energy spectrum of light elements in cosmic rays, in particular, of primary H plus He nuclei, is reported. The spectrum is presented in the energy range from 6 to 158 TeV per nucleus. Data was collected with the High Altitude Water Cherenkov (HAWC) Observatory between June 2015 and June 2019. The analysis was based on a Bayesian unfolding procedure, which was applied on a subsample of vertical HAWC data that was enriched to 82% of events induced by light nuclei. To achieve the mass separation, a cut on the lateral age of air shower data was set guided by predictions of CORSIKA/QGSJET-I1-04 simulations. The measured spectrum is consistent with a broken power-law spectrum and shows a kneelike feature at around E = 24.0(-3.1)(+3.6) TeV, with a spectral index gamma = -2.51 +/- 0.02 before the break and with gamma = -2.83 +/- 0.02 above it. The feature has a statistical significance of 4.1 sigma. Within systematic uncertainties, the significance of the spectral break is 0.8 sigma.
Address [Albert, A.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: juan.arteaga@umich.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000789448800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5215
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Real, D.; Sanchez-Losa, A.; Saina, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Searches for Neutrinos in the Direction of Radio-bright Blazars with the ANTARES Telescope Type Journal Article
Year 2024 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 964 Issue 1 Pages 3 - 13pp
Keywords
Abstract (up) Active galaxies, especially blazars, are among the most promising extragalactic candidates for high-energy neutrino sources. To date, ANTARES searches included these objects and used GeV-TeV gamma-ray flux to select blazars. Here, a statistically complete blazar sample selected by their bright radio emission is used as the target for searches of origins of neutrinos collected by the ANTARES neutrino telescope over 13 yr of operation. The hypothesis of a neutrino-blazar directional correlation is tested by pair counting and a complementary likelihood-based approach. The resulting posttrial p-value is 3.0% (2.2 sigma in the two-sided convention). Additionally, a time-dependent analysis is performed to search for temporal clustering of neutrino candidates as a means of detecting neutrino flares in blazars. None of the investigated sources alone reaches a significant flare detection level. However, the presence of 18 sources with a pretrial significance above 3 sigma indicates a p = 1.4% (2.5 sigma in the two-sided convention) detection of a time-variable neutrino flux. An a posteriori investigation reveals an intriguing temporal coincidence of neutrino, radio, and gamma-ray flares of the J0242+1101 blazar at a p = 0.5% (2.9 sigma in the two-sided convention) level. Altogether, the results presented here suggest a possible connection of neutrino candidates detected by the ANTARES telescope with radio-bright blazars.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, UMR 7178, IPHC, F-67000 Strasbourg, France, Email: julien.aublin@apc.in2p3.fr;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:001183251300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5996
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Pieterse, C.; Real, D.; Saina, A.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Review of the online analyses of multi-messenger alerts and electromagnetic transient events with the ANTARES neutrino telescope Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 072 - 23pp
Keywords neutrino astronomy; neutrino detectors
Abstract (up) By constantly monitoring a very large portion of the sky, neutrino telescopes are well-designed to detect neutrinos emitted by transient astrophysical events. Real-time searches with the ANTARES telescope have been performed to look for neutrino candidates coincident with gamma-ray bursts detected by the Swift and Fermi satellites, high-energy neutrino events registered by IceCube, transient events from blazars monitored by HAWC, photon-neutrino coincidences by AMON notices and gravitational wave candidates observed by LIGO/Virgo. By requiring temporal coincidence, this approach increases the sensitivity and the significance of a potential discovery. This paper summarises the results of the followup performed of the ANTARES telescope between January 2014 and February 2022, which corresponds to the end of the data-taking period.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: dornic@cppm.in2p3.fr
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001068854500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5703
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F.
Title Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories Type Journal Article
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 667 Issue Pages A36 - 12pp
Keywords methods; data analysis; gamma rays; general
Abstract (up) Context. Ground-based gamma-ray astronomy is still a rather young field of research, with strong historical connections to particle physics. This is why most observations are conducted by experiments with proprietary data and analysis software, as is usual in the particle physics field. However, in recent years, this paradigm has been slowly shifting toward the development and use of open-source data formats and tools, driven by upcoming observatories such as the Cherenkov Telescope Array (CTA). In this context, a community-driven, shared data format (the gamma-astro-data-format, or GADF) and analysis tools such as Gammapy and ctools have been developed. So far, these efforts have been led by the Imaging Atmospheric Cherenkov Telescope community, leaving out other types of ground-based gamma-ray instruments. Aims. We aim to show that the data from ground particle arrays, such as the High-Altitude Water Cherenkov (HAWC) observatory, are also compatible with the GADF and can thus be fully analyzed using the related tools, in this case, Gammapy. Methods. We reproduced several published HAWC results using Gammapy and data products compliant with GADF standard. We also illustrate the capabilities of the shared format and tools by producing a joint fit of the Crab spectrum including data from six different gamma-ray experiments. Results. We find excellent agreement with the reference results, a powerful confirmation of both the published results and the tools involved. Conclusions. The data from particle detector arrays such as the HAWC observatory can be adapted to the GADF and thus analyzed with Gammapy. A common data format and shared analysis tools allow multi-instrument joint analysis and effective data sharing. To emphasize this, a sample of Crab nebula event lists is made public with this paper. Because of the complementary nature of pointing and wide-field instruments, this synergy will be distinctly beneficial for the joint scientific exploitation of future observatories such as the Southern Wide-field Gamma-ray Observatory and CTA.
Address [Albert, A.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: laura.olivera-nieto@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000879223700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5408
Permanent link to this record
 

 
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F.
Title HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon Type Journal Article
Year 2021 Publication Nature Astronomy Abbreviated Journal Nat. Astron.
Volume 4 Issue Pages 465–471
Keywords
Abstract (up) Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way(1,2). Traditionally, it has been presumed that supernova remnants were the main source of these very-high-energy cosmic rays(3,4), but theoretically it is difficult to accelerate protons to PeV energies(5,6) and observationally there simply is no evidence of the remnants being sources of hadrons with energies above a few tens of TeV7,8. One possible source of protons with those energies is the Galactic Centre region(9). Here, we report observations of 1-100 TeV gamma rays coming from the 'Cygnus Cocoon'(10), which is a superbubble that surrounds a region of massive star formation. These gamma rays are likely produced by 10-1,000 TeV freshly accelerated cosmic rays that originate from the enclosed star-forming region Cyg OB2. Until now it was not known that such regions could accelerate particles to these energies. The measured flux likely originates from hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.
Address [Abeysekara, A. U.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: rdb3@stanford.edu;
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-3366 ISBN Medium
Area Expedition Conference
Notes WOS:000627714400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4763
Permanent link to this record