|   | 
Details
   web
Records
Author CALICE Collaboration (Lai, S. et al); Irles, A.
Title Software compensation for highly granular calorimeters using machine learning Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 4 Pages P04037 - 28pp
Keywords Large detector-systems performance; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors
Abstract (up) A neural network for software compensation was developed for the highly granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information from the AHCAL and energy information, which is expected to improve sensitivity to shower development and the neutron fraction of the hadron shower. The neural network method produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a linear detector response and outperformed a published control method regarding resolution for every particle energy studied.
Address [Lai, S.; Utehs, J.; Wilhahn, A.] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: jack.rolph@desy.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001230094600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6128
Permanent link to this record
 

 
Author CALICE Collaboration (White, A. et al); Irles, A.
Title Design, construction and commissioning of a technological prototype of a highly granular SiPM-on-tile scintillator-steel hadronic calorimeter Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 11 Pages P11018 - 39pp
Keywords Calorimeters; Detector alignment and calibration methods (lasers, sources, par ticle- beams); Detector design and construction technologies and materials
Abstract (up) The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a design and construction techniques scalable to a collider detector. The prototype consists of a steel absorber structure and active layers of small scintillator tiles that are individually read out by directly coupled SiPMs. Each layer has an active area of 72 x 72 cm2 and a tile size of 3 x 3 cm2. With 38 active layers, the prototype has nearly 22, 000 readout channels, and its total thickness amounts to 4.4 nuclear interaction lengths. The dedicated readout electronics provide time stamping of each hit with an expected resolution of about 1 ns. The prototype was constructed in 2017 and commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers at different energies in test beams at CERN in 2018. In this paper, the design of the prototype, its construction and commissioning are described. The methods used to calibrate the detector are detailed, and the performance achieved in terms of uniformity and stability is presented.
Address [White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001127235400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5874
Permanent link to this record
 

 
Author Irles, A.; Marquez, J.P.; Pöschl, R.; Richard, F.; Saibel, A.; Yamamoto, H.; Yamatsu, N.
Title Probing gauge-Higgs unification models at the ILC with quark-antiquark forward-backward asymmetry at center-of-mass energies above the Z mass Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 5 Pages 537 - 17pp
Keywords
Abstract (up) The International Linear Collider (ILC) will allow the precise study of e(-)e(+)-> q (q) over bar interactions at different center-of-mass energies from the Z-pole to 1 TeV. In this paper, we discuss the experimental prospects for measuring differential observables in e(-)e(+)-> b (b) over bar and e(-)e(+) -> c (c) over bar at the ILC baseline energies, 250 and 500 GeV. The study is based on full simulation and reconstruction of the International Large Detector (ILD) concept. Two gauge-Higgs unification models predicting new high-mass resonances beyond the Standard Model are discussed. These models predict sizable deviations of the forward-backward observables at the ILC running above the Z mass and with longitudinally polarized electron and positron beams. The ability of the ILC to probe these models via high-precision measurements of the forward-backward asymmetry is discussed. Alternative scenarios at other energies and beam polarization schemes are also discussed, extrapolating the estimated uncertainties from the two baseline scenarios.
Address [Irles, A.; Marquez, J. P.; Saibel, A.; Yamamoto, H.] Univ Valencia, IFIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: adrian.irles@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001234571800011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6139
Permanent link to this record
 

 
Author CMS and CALICE Collaborations (Acar, B. et al); Irles, A.
Title Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 8 Pages P08014 - 32pp
Keywords Calorimeters; Large detector systems for particle and astroparticle physics; Radiation-hard detectors; Si microstrip and pad detectors
Abstract (up) The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly read out by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.
Address [Caraway, B.; Dittmann, J.; Hatakeyama, K.; Kanuganti, A. R.; Wilson, J. S.] Baylor Univ, Waco, TX 76706 USA, Email: Seema.Sharma@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001085057700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5784
Permanent link to this record
 

 
Author Durieux, G.; Irles, A.; Miralles, V.; Peñuelas, A.; Perello, M.; Poschl, R.; Vos, M.
Title The electro-weak couplings of the top and bottom quarks – Global fit and future prospects Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 098 - 44pp
Keywords Phenomenology of Field Theories in Higher Dimensions
Abstract (up) We evaluate the implications of LHC and LEP/SLC measurements for the electro-weak couplings of the top and bottom quarks. We derive global bounds on the Wilson coefficients of ten two-fermion operators in an effective field theory description. The combination of hadron collider data with Z -pole measurements is found to yield tight limits on the operator coefficients that modify the left-handed couplings of the bottom and top quark to the Z boson. We also present projections for the high-luminosity phase of the LHC and for future electron-positron colliders. The bounds on the operator coefficients are expected to improve substantially during the remaining LHC programme, by factors of 1 to 5 if systematic uncertainties are scaled as statistical ones. The operation of an e(+)e(-) collider at a center-of-mass energy above the top-quark pair production threshold is expected to further improve the bounds by one to two orders of magnitude. The combination of measurements in pp and e(+)e(-) collisions allows for a percent-level determination of the top-quark Yukawa coupling, that is robust in a global fit.
Address [Durieux, Gauthier] Technion Israel Inst Technol, Dept Phys, IL-3200003 Haifa, Israel, Email: durieux@campus.technion.ac.il;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000513489700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4280
Permanent link to this record