|   | 
Details
   web
Records
Author Kuhn, J.H.; Rodrigo, G.
Title Charge asymmetries of top quarks at hadron colliders revisited Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 063 - 25pp
Keywords Heavy Quark Physics; Hadronic Colliders; Standard Model; Beyond Standard Model
Abstract (up) A sizeable difference in the differential production cross section of top-compared to antitop-quark production, denoted charge asymittetm has been observed at the Tevatron. The experimental results seem to exceed the theory predictions based on the Standard Model by a significant amount and have triggered a large number of suggestions for “new physics'. In the present paper the Standard Model predictions for Tevatron and LHe experiments are revisited. This includes a reanalysis of electromagnetic as well as weak corrections, leading to a shift of the asymmetry by roughly a factor 1.1 when compared to the results of the first papers on this subject. The impact of cuts on the transverse momentum of the top-antitop system is studied. Restricting the it system to a transverse momentum less than 20 GeV leads to an enhancement of the asymmetries by factors between 1.3 and 1.5, indicating the importance of an improved understanding of the tt-momentum distribution. Predictions for similar measurements at the LHC are presented, demonstrating the sensitivity of the large rapidity region bot ti to the Standard Model contribution and effects from ”new physics".
Address [Kuehn, Johann H.] Karlsruher Inst Technol, Inst Theoret Teilchenphys, D-76133 Karlsruhe, Germany, Email: johann.kuehn@kit.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000300181800063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 971
Permanent link to this record
 

 
Author Plenter, J.; Rodrigo, G.
Title Asymptotic expansions through the loop-tree duality Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 4 Pages 320 - 13pp
Keywords
Abstract (up) Asymptotic expansions of Feynman amplitudes in the loop-tree duality formalism are implemented at integrand-level in the Euclidean space of the loop three-momentum, where the hierarchies among internal and external scales are well-defined. The ultraviolet behaviour of the individual contributions to the asymptotic expansion emerges only in the first terms of the expansion and is renormalized locally in four space-time dimensions. These two properties represent an advantage over the method of Expansion by Regions. We explore different approaches in different kinematical limits, and derive explicit asymptotic expressions for several benchmark configurations.
Address [Plenter, Judith; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, Valencia 46980, Spain, Email: plenter@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000641475900003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4810
Permanent link to this record
 

 
Author Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.
Title From Five-Loop Scattering Amplitudes to Open Trees with the Loop-Tree Duality Type Journal Article
Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 14 Issue 12 Pages 2571 - 14pp
Keywords perturbative QFT; higher-order calculations; multiloop Feynman integrals
Abstract (up) Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7MLT universal topology, that allows us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.
Address [Ramirez-Uribe, Selomit; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, Consejo Super Invest Cient, Parc Cient, E-46980 Paterna, Spain, Email: roger@uas.edu.mx
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000904374000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5450
Permanent link to this record
 

 
Author Martinez de Lejarza, J.J.; Cieri, L.; Rodrigo, G.
Title Quantum clustering and jet reconstruction at the LHC Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 3 Pages 036021 - 16pp
Keywords
Abstract (up) Clustering is one of the most frequent problems in many domains, in particular, in particle physics where jet reconstruction is central in experimental analyses. Jet clustering at the CERN's Large Hadron Collider (LHC) is computationally expensive and the difficulty of this task will increase with the upcoming High-Luminosity LHC (HL-LHC). In this paper, we study the case in which quantum computing algorithms might improve jet clustering by considering two novel quantum algorithms which may speed up the classical jet clustering algorithms. The first one is a quantum subroutine to compute a Minkowski-based distance between two data points, whereas the second one consists of a quantum circuit to track the maximum into a list of unsorted data. The latter algorithm could be of value beyond particle physics, for instance in statistics. When one or both of these algorithms are implemented into the classical versions of well-known clustering algorithms (K-means, affinity propagation, and k(T) -jet) we obtain efficiencies comparable to those of their classical counterparts. Even more, exponential speed-up could be achieved, in the first two algorithms, in data dimensionality and data length when the distance algorithm or the maximum searching algorithm are applied.
Address [Martinez de Lejarza, Jorge J.; Cieri, Leandro; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: Jorge.M.Lejarza@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000850823300008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5357
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F.
Title FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3 Type Journal Article
Year 2019 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume 228 Issue 4 Pages 755-1107
Keywords
Abstract (up) In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.
Address [Apyan, A.] AI Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia, Email: Michael.Benedikt@cern.ch
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:000477858500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4082
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F.
Title HE-LHC: The High-Energy Large Hadron Collider Future Circular Collider Conceptual Design Report Volume 4 Type Journal Article
Year 2019 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume 228 Issue 5 Pages 1109-1382
Keywords
Abstract (up) In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.
Address [Apyan, A.] AI Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia, Email: frank.zimmermann@cern.ch
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:000476546300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4089
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F.
Title FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 Type Journal Article
Year 2019 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume 228 Issue 2 Pages 261-623
Keywords
Abstract (up) In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today's technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.
Address [Apyan, A.] AI Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia, Email: michael.benedikt@cern.ch
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:000470784400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4058
Permanent link to this record
 

 
Author Torres Bobadilla, W.J. et al; Driencourt-Mangin, F.; Rodrigo, G.
Title May the four be with you: novel IR-subtraction methods to tackle NNLO calculations Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 3 Pages 250 - 61pp
Keywords
Abstract (up) In this manuscript, we report the outcome of the topical workshop: paving the way to alternative NNLO strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_3.0), by presenting a discussion about different frameworks to perform precise higher-order computations for high-energy physics. These approaches implement novel strategies to deal with infrared and ultraviolet singularities in quantum field theories. A special emphasis is devoted to the local cancellation of these singularities, which can enhance the efficiency of computations and lead to discover novel mathematical properties in quantum field theories.
Address [Torres Bobadilla, W. J.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: torres@mpp.mpg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000631882200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4788
Permanent link to this record
 

 
Author Campanario, F.; Czyz, H.; Gluza, J.; Jelinski, T.; Rodrigo, G.; Tracz, S.; Zhuridov, D.
Title Standard model radiative corrections in the pion form factor measurements do not explain the a(mu) anomaly Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 7 Pages 076004 - 5pp
Keywords
Abstract (up) In this paper, we address the question of whether the almost four standard deviations difference between theory and experiment for the muon anomalous magnetic moment a(mu) can be explained as a higher-order Standard Model perturbation effect in the pion form factor measurements. This question has, until now, remained open, obscuring the source of discrepancies between the measurements. We calculate the last radiative corrections for the extraction of the pion form factor, which were believed to be potentially substantial enough to explain the data within the Standard Model. We find that the corrections are too small to diminish existing discrepancies in the determination of the pion form factor for different kinematical configurations of low-energy BABAR, BES-III and KLOE experiments. Consequently, they cannot noticeably change the previous predictions for a(mu) and decrease the deviations between theory and direct measurements. To solve the above issues, new data and better understanding of low-energy experimental setups are needed, especially as new direct a(mu) measurements at Fermilab and J-PARC will provide new insights and substantially shrink the experimental error.
Address [Campanario, Francisco; Rodrigo, German; Tracz, Szymon] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: henryk.czyz@us.edu.pl
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000489577800008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4168
Permanent link to this record
 

 
Author Llanes Jurado, J.; Rodrigo, G.; Torres Bobadilla, W.J.
Title From Jacobi off-shell currents to integral relations Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 122 - 22pp
Keywords NLO Computations; QCD Phenomenology
Abstract (up) In this paper, we study off-shell currents built from the Jacobi identity of the kinematic numerators of gg -> X with X = ss, q (q) over bar, gg. We find that these currents can be schematically written in terms of three-point interaction Feynman rules. This representation allows for a straightforward understanding of the Colour-Kinematics duality as well as for the construction of the building blocks for the generation of higher-multiplicity tree-level and multi-loop numerators. We also provide one-loop integral relations through the Loop-Tree duality formalism with potential applications and advantages for the computation of relevant physical processes at the Large Hadron Collider. We illustrate these integral relations with the explicit examples of QCD one-loop numerators of gg -> ss.
Address [Llanes Jurado, Jose; Rodrigo, German; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: jollaju@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000418560700004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3431
Permanent link to this record