|   | 
Details
   web
Records
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L.
Title Acceleration radiation, transition probabilities and trans-Planckian physics Type Journal Article
Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 12 Issue Pages 095017 - 18pp
Keywords
Abstract (up) An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics in describing the creation of quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities and local two-point functions. By writing down separate expressions for the spontaneous-and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non-trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. This is so, at least, when trans-Planckian physics is defined in a Lorentz-invariant way. This analysis also suggests how one can define and estimate the role of trans-Planckian physics in the Hawking effect itself.
Address [Agullo, Ivan; Olmo, Gonzalo J.; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA, Email: ivan.agullo@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes ISI:000284766400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 318
Permanent link to this record
 

 
Author Agullo, I.; Bonga, B.; Ribes-Metidieri, P.; Kranas, D.; Nadal-Gisbert, S.
Title How ubiquitous is entanglement in quantum field theory? Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 8 Pages 085005 - 25pp
Keywords
Abstract (up) It is well known that entanglement is widespread in quantum field theory, in the following sense: every Reeh-Schlieder state contains entanglement between any two spatially separated regions. This applies, in particular, to the vacuum of a noninteracting scalar theory in Minkowski spacetime. Discussions on entanglement in field theory have focused mainly on subsystems containing infinitely many degrees of freedom-typically, the field modes that are supported within a compact region of space. In this article, we study entanglement in subsystems made of finitely many field degrees of freedom, in a free scalar theory in D + 1-dimensional Minkowski spacetime. The focus on finitely many modes of the field is motivated by the finite capabilities of real experiments. We find that entanglement between finite-dimensional subsystems is not common at all, and that one needs to carefully select the support of modes for entanglement to show up. We also find that entanglement is increasingly sparser in higher dimensions. We conclude that entanglement in Minkowski spacetime is significantly less ubiquitous than normally thought.
Address [Agullo, Ivan; Ribes-Metidieri, Patricia; Kranas, Dimitrios; Nadal-Gisbert, Sergi] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001157784100011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5936
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title On the Electric-Magnetic Duality Symmetry: Quantum Anomaly, Optical Helicity, and Particle Creation Type Journal Article
Year 2018 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 10 Issue 12 Pages 763 - 14pp
Keywords electric-magnetic duality symmetry; quantum anomalies; optical helicity; electromagnetic polarization; particle creation
Abstract (up) It is well known that not every symmetry of a classical field theory is also a symmetry of its quantum version. When this occurs, we speak of quantum anomalies. The existence of anomalies imply that some classical Noether charges are no longer conserved in the quantum theory. In this paper, we discuss a new example for quantum electromagnetic fields propagating in the presence of gravity. We argue that the symmetry under electric-magnetic duality rotations of the source-free Maxwell action is anomalous in curved spacetimes. The classical Noether charge associated with these transformations accounts for the net circular polarization or the optical helicity of the electromagnetic field. Therefore, our results describe the way the spacetime curvature changes the helicity of photons and opens the possibility of extracting information from strong gravitational fields through the observation of the polarization of photons. We also argue that the physical consequences of this anomaly can be understood in terms of the asymmetric quantum creation of photons by the gravitational field.
Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes WOS:000454725100101 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3867
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title Classical and quantum aspects of electric-magnetic duality rotations in curved spacetimes Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 12 Pages 125001 - 22pp
Keywords
Abstract (up) It is well known that the source-free Maxwell equations are invariant under electric-magnetic duality rotations, F -> F cos theta +*F sin theta. These transformations are indeed a symmetry of the theory in the Noether sense. The associated constant of motion is the difference in the intensity between self-dual and anti-self-dual components of the electromagnetic field or, equivalently, the difference between the right and left circularly polarized components. This conservation law holds even if the electromagnetic field interacts with an arbitrary classical gravitational background. After reexamining these results, we discuss whether this symmetry is maintained when the electromagnetic field is quantized. The answer is in the affirmative in the absence of gravity but not necessarily otherwise. As a consequence, the net polarization of the quantum electromagnetic field fails to be conserved in curved spacetimes. This is a quantum effect, and it can be understood as the generalization of the fermion chiral anomaly to fields of spin one.
Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000451998400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3824
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L.
Title Hawking Radiation by Kerr Black Holes and Conformal Symmetry Type Journal Article
Year 2010 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 105 Issue 21 Pages 211305 - 4pp
Keywords
Abstract (up) The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.
Address [Agullo, Ivan; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes ISI:000284407400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 322
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title Electromagnetic Duality Anomaly in Curved Spacetimes Type Journal Article
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 118 Issue 11 Pages 111301 - 5pp
Keywords
Abstract (up) The source-free Maxwell action is invariant under electric-magnetic duality rotations in arbitrary spacetimes. This leads to a conserved classical Noether charge. We show that this conservation law is broken at the quantum level in the presence of a background classical gravitational field with a nontrivial Chern-Pontryagin invariant, in parallel with the chiral anomaly for massless Dirac fermions. Among the physical consequences, the net polarization of the quantum electromagnetic field is not conserved.
Address [Agullo, Ivan; del Rio, Adrian] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000396267100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2964
Permanent link to this record
 

 
Author del Rio, A.; Sanchis-Gual, N.; Mewes, V.; Agullo, I.; Font, J.A.; Navarro-Salas, J.
Title Spontaneous Creation of Circularly Polarized Photons in Chiral Astrophysical Systems Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 124 Issue 21 Pages 211301 - 6pp
Keywords
Abstract (up) This work establishes a relation between chiral anomalies in curved spacetimes and the radiative content of the gravitational field. In particular, we show that a flux of circularly polarized gravitational waves triggers the spontaneous creation of photons with net circular polarization from the quantum vacuum. Using waveform catalogs, we identify precessing binary black holes as astrophysical configurations that emit such gravitational radiation and then solve the fully nonlinear Einstein's equations with numerical relativity to evaluate the net effect. The quantum amplitude for a merger is comparable to the Hawking emission rate of the final black hole and small to be directly observed. However, the implications for the inspiral of binary neutron stars could be more prominent, as argued on symmetry grounds.
Address [del Rio, Adrian; Sanchis-Gual, Nicolas] Univ Lisbon, Inst Super Tecn, Ctr Astrofis & Gravitacao CENTRA, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000535679100012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4407
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title Gravity and handedness of photons Type Journal Article
Year 2017 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 26 Issue 12 Pages 1742001 - 5pp
Keywords Quantum fields in curved spacetime; symmetry and conservation laws; electromagnetic wave propagation; anomalies
Abstract (up) Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000414411900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3355
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L.
Title Remarks on the renormalization of primordial cosmological perturbations Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 10 Pages 107304 - 5pp
Keywords
Abstract (up) We briefly review the need to perform renormalization of inflationary perturbations to properly work out the physical power spectra. We also summarize the basis of (momentum-space) renormalization in curved spacetime and address several misconceptions found in recent literature on this subject.
Address [Agullo, I] Penn State Univ, Dept Phys, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000297126700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 811
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L.
Title Reply to "Comment on 'Insensitivity of Hawking radiation to an invariant Planck-scale cutoff' '' Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 10 Pages 108502 - 3pp
Keywords
Abstract (up) We clarify the relationship between the conclusions of the previous Comment of A. Helfer [A. Helfer, preceding Comment, Phys. Rev. D 81, 108501 (2010)] and that of our Brief Report [I. Agullo, J. Navarro-Salas, G. J. Olmo, and L. Parker, Phys. Rev. D 80, 047503 (2009).].
Address [Agullo, Ivan; Olmo, Gonzalo J.; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000278146700144 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 430
Permanent link to this record