Thisse, D. et al, Algora, A., & Guadilla, V. (2023). Study of N=50 gap evolution around Z=32: new structure information for Ge-82. Eur. Phys. J. A, 59(7), 153–13pp.
Abstract: Medium spin states of light N = 50 isotones have been populated using fast neutron-induced fission of Th-232. Online prompt gamma spectroscopy has been performed using the hybrid gamma spectrometer nu-Ball coupled to the LICORNE directional neutron source at the ALTO facility of IJCLab. Medium spin states of the neutron-rich nucleus Ge-82 have been investigated using gamma-gamma and gamma-gamma-gamma coincidence data to exploit the resolving power of nu-Ball. Two new transitions were assigned to this nucleus and a new level was placed in the level scheme. We tentatively assigned to this new state a (7(+)) spin-parity, which is interpreted as a new N = 50 core breaking state. This provides further insight into the energy evolution of the N = 50 shell gap toward Ni-78.
|
Guadilla, V., Algora, A., Estienne, M., Fallot, M., Gelletly, W., Porta, A., et al. (2024). First measurements with a new fl-electron detector for spectral shape studies. J. Instrum., 19(2), P02027–21pp.
Abstract: The shape of the electron spectrum emitted in /3 decay carries a wealth of information about nuclear structure and fundamental physics. In spite of that, few dedicated measurements have been made of /3 -spectrum shapes. In this work we present a newly developed detector for /3 electrons based on a telescope concept. A thick plastic scintillator is employed in coincidence with a thin silicon detector. The first measurements employing this detector have been carried out with mono -energetic electrons from the high-energy resolution electron -beam spectrometer at Bordeaux. Here we report on the good reproduction of the experimental spectra of mono -energetic electrons using Monte Carlo simulations. This is a crucial step for future experiments, where a detailed Monte Carlo characterization of the detector is needed to determine the shape of the /3 -electron spectra by deconvolution of the measured spectra with the response function of the detector. A chamber to contain two telescope assemblies has been designed for future /3 -decay experiments at the Ion Guide Isotope Separator On -Line facility in Jyvaskyla, aimed at improving our understanding of reactor antineutrino spectra.
|
Algora, A. et al, Rubio, B., Agramunt, J., Guadilla, V., Montaner-Piza, A., Morales, A. I., et al. (2025). Isospin Symmetry Breaking in the 71Kr and 71Br Mirror System. Phys. Rev. Lett., 134(16), 162502–9pp.
Abstract: Isospin symmetry is a fundamental concept in nuclear physics. Even though isospin symmetry is partially broken, it holds approximately for most nuclear systems, which makes exceptions very interesting from the nuclear structure perspective. In this framework, it is expected that the spins and parities of the ground states of mirror nuclei should be the same, in particular for the simplest systems where a proton is exchanged with a neutron or vice versa. In this Letter, we present evidence that this assumption is broken in the mirror pair 71Br and 71Kr system. Our conclusions are based on a high-statistics /3 decay study of 71Kr and on state-of-the-art shell model calculations. In our work, we also found evidence of a new state in 70Se, populated in the /3-delayed proton emission process which can be interpreted as the long sought coexisting 0 & thorn; state.
|