|   | 
Details
   web
Records
Author n_TOF Collaboration (Torres-Sanchez, P. et al); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the 14N(n, p) 14C cross section at the CERN n_TOF facility from subthermal energy to 800 keV Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal (down) Phys. Rev. C
Volume 107 Issue 6 Pages 064617 - 15pp
Keywords
Abstract Background: The 14N(n, p) 14C reaction is of interest in neutron capture therapy, where nitrogen-related dose is the main component due to low-energy neutrons, and in astrophysics, where 14N acts as a neutron poison in the s process. Several discrepancies remain between the existing data obtained in partial energy ranges: thermal energy, keV region, and resonance region. Purpose: We aim to measure the 14N(n, p) 14C cross section from thermal to the resonance region in a single measurement for the first time, including characterization of the first resonances, and provide calculations of Maxwellian averaged cross sections (MACS). Method: We apply the time-of-flight technique at Experimental Area 2 (EAR-2) of the neutron time-of-flight (n_TOF) facility at CERN. 10B(n, & alpha;) 7Li and 235U(n, f ) reactions are used as references. Two detection systems are run simultaneously, one on beam and another off beam. Resonances are described with the R-matrix code SAMMY. Results: The cross section was measured from subthermal energy to 800 keV, resolving the first two resonances (at 492.7 and 644 keV). A thermal cross section was obtained (1.809 & PLUSMN; 0.045 b) that is lower than the two most recent measurements by slightly more than one standard deviation, but in line with the ENDF/B-VIII.0 and JEFF-3.3 evaluations. A 1/v energy dependence of the cross section was confirmed up to tens of keV neutron energy. The low energy tail of the first resonance at 492.7 keV is lower than suggested by evaluated values, while the overall resonance strength agrees with evaluations. Conclusions: Our measurement has allowed determination of the 14N(n, p) cross section over a wide energy range for the first time. We have obtained cross sections with high accuracy (2.5%) from subthermal energy to 800 keV and used these data to calculate the MACS for kT = 5 to kT = 100 keV.
Address [Torres-Sanchez, Pablo; Praena, Javier; Porras, Ignacio; Ogallar, Francisco] Univ Granada, Granada, Spain, Email: pablotorres@ugr.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001063209900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5701
Permanent link to this record
 

 
Author Yokoyama, R. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tolosa-Delgado, A.
Title β-delayed neutron emissions from N > 50 gallium isotopes Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal (down) Phys. Rev. C
Volume 108 Issue 6 Pages 064307 - 15pp
Keywords
Abstract beta-delayed gamma-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of 3He neutron counters (BRIKEN). beta-2n-gamma events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the gamma branching ratios were obtained for these isotopes, and the neutron emission probabilities (P-xn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P-1n and P-2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P-2n/P-1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and gamma branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J <= 3 for the unknown ground-state spin of the odd-odd nucleus Ga-86, from the I gamma(4(+)-> 2(+))/I-gamma(2(+)-> 0(+)) ratio of Ga-84 and the P-2n/P-1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to gamma measurements of the multineutron emitters.
Address [Yokoyama, R.; Grzywacz, R.; Rasco, B. C.; Brewer, N.; Heideman, J.; King, T. T.; Madurga, M.; Singh, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: yokoyama@cns.s.u-tokyo.ac.jp
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001159167500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5939
Permanent link to this record
 

 
Author n_TOF Collaboration (Massimi, C. et al.); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title Neutron spectroscopy of Mg-26 states: Constraining the stellar neutron source Ne-22(alpha, n)Mg-25 Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B
Volume 768 Issue Pages 1-6
Keywords s Process; alpha+Ne-22; Neutron spectroscopy
Abstract This work reports on accurate, high-resolution measurements of the Mg-25(n, gamma)Mg-26 and Mg-25(n, tot) cross sections in the neutron energy range from thermal to about 300 keV, leading to a significantly improved Mg-25(n, gamma)Mg-26 parametrization. The relevant resonances for n+Mg-25 were characterized from a combined R-matrix analysis of the experimental data. This resulted in an unambiguous spin/parity assignment of the corresponding excited states in Mg-26. With this information experimental upper limits of the reaction rates for Ne-22(alpha, n)Mg-25 and Ne-22(alpha, gamma)Mg-26 were established, potentially leading to a significantly higher (alpha, n)/(alpha, gamma) ratio than previously evaluated. The impact of these results has been studied for stellar models in the mass range 2 to 25 M-circle dot. (C) 2017 The Author(s). Published by Elsevier B.V.
Address [Massimi, C.; Barbagallo, M.; Becvar, F.; Bisterzok, S.; Castelluccio, D. M.; Eleftheriadis, C.; Finocchiaro, P.; Kokkoris, M.; Marganiec, J.; Plompen, A.; Praena, J.; Rubbia, C.; Weiss, C.] Ist Nazl Fis Nucl, Bologna, Italy, Email: cristian.massimi@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000400677700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3112
Permanent link to this record
 

 
Author n_TOF Collaboration (Lederer-Woods, C. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement of Ge-73(n, gamma) cross sections and implications for stellar nucleosynthesis Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B
Volume 790 Issue Pages 458-465
Keywords Nucleosynthesis; Neutron capture; s process; Germanium; n_TOF
Abstract Ge-73(n, gamma) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT = 30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of Ge-73 produced in stars, which would explain the low isotopic abundance of Ge-73 in the solar system.
Address [Lederer-Woods, C.; Battino, U.; Tattersalla, A.; Dietz, M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Midlothian, Scotland, Email: claudia.lederer-woods@ed.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000460118200058 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3936
Permanent link to this record
 

 
Author n_TOF Collaboration (Mazzone, A. et al); Babiano-Suarez, V; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I; Tain, J.L.
Title Measurement of the Gd-154(n, gamma) cross section and its astrophysical implications Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B
Volume 804 Issue Pages 135405 - 6pp
Keywords s process; Gd-154; Neutron time of flight; n_TOF
Abstract The neutron capture cross section of Gd-154 was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in Gd-154. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted Gd-154(n, gamma) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
Address [Mazzone, A.; Barbagallo, M.; Colonna, N.; Damone, L. A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Bari, Italy, Email: Cristian.Massimi@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000548740300022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4464
Permanent link to this record