|   | 
Details
   web
Records
Author Centelles Chulia, S.; Herrero-Brocal, A.; Vicente, A.
Title The Type-I Seesaw family Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal (down) J. High Energy Phys.
Volume 07 Issue 7 Pages 060 - 35pp
Keywords Lepton Flavour Violation (charged); New Light Particles; Non-Standard Neutrino Properties; Specific BSM Phenomenology
Abstract We provide a comprehensive analysis of the Type-I Seesaw family of neutrino mass models, including the conventional type-I seesaw and its low-scale variants, namely the linear and inverse seesaws. We establish that all these models essentially correspond to a particular form of the type-I seesaw in the context of explicit lepton number violation. We then focus into the more interesting scenario of spontaneous lepton number violation, systematically categorizing all inequivalent minimal models. Furthermore, we identify and flesh out specific models that feature a rich majoron phenomenology and discuss some scenarios which, despite having heavy mediators and being invisible in processes such as μ-> e gamma, predict sizable rates for decays including the majoron in the final state.
Address [Centelles Chulia, Salvador] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001264784900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6201
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Tortola, M.; Valle, J.W.F.; Vicente, A.
Title Leptogenesis with a dynamical seesaw scale Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (down) J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 052 - 20pp
Keywords leptogenesis; baryon asymmetry; particle physics – cosmology connection; neutrino theory
Abstract In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting B – L asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the B – L asymmetry yield turns out to be independent upon initial conditions, in contrast to the “standard” case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal one down to low temperatures, implying a drastic suppression of the efficiency which in some cases can render the B – L generation mechanism inoperative.
Address [Sierra, D. Aristizabal; Vicente, A.] Univ Liege, IFPA, Dept Astrophys Geophys & Oceanog, B-4000 Liege, Belgium, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000339802700053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1868
Permanent link to this record
 

 
Author Aoki, M.; Toma, T.; Vicente, A.
Title Non-thermal production of minimal dark matter via right-handed neutrino decay Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (down) J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 063 - 19pp
Keywords dark matter theory; gamma ray theory; particle physics – cosmology connection; physics of the early universe
Abstract Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)(L) quintuplet and a scalar SU(2)(L) septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.
Address [Aoki, Mayumi] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan, Email: mayumi@hep.s.kanazawa-u.ac.jp;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365690000063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2479
Permanent link to this record
 

 
Author Cai, Y.; Herrero-Garcia, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R.
Title From the Trees to the Forest: A Review of Radiative Neutrino Mass Models Type Journal Article
Year 2017 Publication Frontiers in Physics Abbreviated Journal (down) Front. Physics
Volume 5 Issue Pages 63 - 56pp
Keywords neutrino masses; lepton flavor violation; lepton number violation; beyond the standard model; effective field theory; model building; LHC; dark matter
Abstract A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.
Address [Cai, Yi] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China, Email: juan.herrero-garcia@coepp.org.au;
Corporate Author Thesis
Publisher Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000416908800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3393
Permanent link to this record
 

 
Author Vicente, A.
Title Higgs Lepton Flavor Violating Decays in Two Higgs Doublet Models Type Journal Article
Year 2019 Publication Frontiers in Physics Abbreviated Journal (down) Front. Physics
Volume 7 Issue Pages 174 - 13pp
Keywords Higgs boson; lepton flavor violating decays; beyond the standard model; two Higgs doublet models; effective field theory
Abstract The discovery of a non-zero rate for a lepton flavor violating decay mode of the Higgs boson would definitely be an indication of New Physics. We review the prospects for such signal in Two Higgs Doublet Models, in particular for Higgs boson decays into tau μfinal states. We will show that this scenario contains all the necessary ingredients to provide large flavor violating rates and still be compatible with the stringent limits from direct searches and low-energy flavor experiments.
Address [Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: avelino.vicente@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000498568200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4206
Permanent link to this record