toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P. url  doi
openurl 
  Title Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal (down) J. Instrum.  
  Volume 13 Issue Pages P01031 - 26pp  
  Keywords Digital signal processing (DSP); Particle identification methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Neutrino detectors  
  Abstract Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.  
  Address [Abrahao, T.; dos Anjos, J. C.; Lima, H.; Pepe, I.; Wagner, S.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: stefan.wagner@apc.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423783800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3466  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Barrios-Marti, J.; Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Perez Romero, J.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. doi  openurl
  Title Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal (down) J. Instrum.  
  Volume 13 Issue Pages P05035 - 17pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors; Photon detectors for UV, visible and IR photons (vacuum)  
  Abstract The Hamamatsu R12199-023-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.  
  Address [Morganti, M.] Accademia Navale Livorno, Viale Italia 72, I-57100 Livorno, Italy, Email: oleg.kalekin@physik.uni-erlangen.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433886900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3601  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Event reconstruction for KM3NeT/ORCA using convolutional neural networks Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal (down) J. Instrum.  
  Volume 15 Issue 10 Pages P10005 - 39pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors; Performance of High Energy Physics Detectors  
  Abstract The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: thomas.eberl@fau.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000577278000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4570  
Permanent link to this record
 

 
Author Super-Kamiokande Collaboration (Abe, K. et al); Molina Sedgwick, S. url  doi
openurl 
  Title Neutron tagging following atmospheric neutrino events in a water Cherenkov detector Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal (down) J. Instrum.  
  Volume 17 Issue 10 Pages P10029 - 41pp  
  Keywords Particle identification methods; Cherenkov detectors; Neutrino detectors; Large detector systems for particle and astroparticle physics  
  Abstract We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 μs.  
  Address [Abe, K.; Haga, Y.; Hayato, Y.; Hiraide, K.; Ieki, K.; Ikeda, M.; Imaizumi, S.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kataoka, Y.; Kato, Y.; Kishimoto, Y.; Miki, S.; Mine, S.; Miura, M.; Mochizuki, T.; Moriyama, S.; Nagao, Y.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Okada, T.; Okamoto, K.; Orii, A.; Sato, K.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Suzuki, Y.; Takeda, A.; Takemoto, Y.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Ueno, K.; Watanabe, S.; Yano, T.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu, Akita 5061205, Japan, Email: hayato@icrr.u-tokyo.ac.jp  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898723700008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5441  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Molina Bueno, L.; Novella, P. url  doi
openurl 
  Title Scintillator ageing of the T2K near detectors fro 2010 to 2021 Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal (down) J. Instrum.  
  Volume 17 Issue 10 Pages P10028 - 36pp  
  Keywords Gamma detectors (scintillators, CZT, HPGe, HgI etc); Neutrino detectors; Performance of High Energy Physics Detectors; Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9-2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3-5.4% per year, while the short component of the attenuation length did not show any conclusive degradation.  
  Address [Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, ES-28049 Madrid, Spain, Email: m.lawe@lancaster.ac.uk  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898723700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5442  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The KM3NeT multi-PMT optical module Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal (down) J. Instrum.  
  Volume 17 Issue 7 Pages P07038 - 28pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors  
  Abstract The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: km3net-pc@km3net.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898568200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5449  
Permanent link to this record
 

 
Author Agarwalla, S.K.; Huber, P.; Tang, J.A.; Winter, W. url  doi
openurl 
  Title Optimization of the Neutrino Factory, revisited Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal (down) J. High Energy Phys.  
  Volume 01 Issue 1 Pages 120 - 45pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We perform the baseline and energy optimization of the Neutrino Factory including the latest simulation results on the magnetized iron detector (MIND). We also consider the impact of tau decays, generated by v(mu) -> v(tau) or v(e) -> v(tau) appearance, on the mass hierarchy, CP violation, and theta(13) discovery reaches, which we find to be negligible for the considered detector. For the baseline-energy optimization for small sin(2) 2 theta(13), we qualitatively recover the results with earlier simulations of the MIND detector. We find optimal baselines of about 2 500km to 5 000km for the CP violation measurement, where now values of E-mu as low as about 12 GeV may be possible. However, for large sin(2) 2 theta(13), we demonstrate that the lower threshold and the backgrounds reconstructed at lower energies allow in fact for muon energies as low as 5 GeV at considerably shorter baselines, such as FNAL-Homestake. This implies that with the latest MIND analysis, low-and high-energy versions of the Neutrino Factory are just two different versions of the same experiment optimized for different parts of the parameter space. Apart from a green-field study of the updated detector performance, we discuss specific implementations for the two-baseline Neutrino Factory, where the considered detector sites are taken to be currently discussed underground laboratories. We find that reasonable setups can be found for the Neutrino Factory source in Asia, Europe, and North America, and that a triangular-shaped storage ring is possible in all cases based on geometrical arguments only.  
  Address [Agarwalla, Sanjib K.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287937700037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 551  
Permanent link to this record
 

 
Author Donini, A.; Gomez-Cadenas, J.J.; Meloni, D. url  doi
openurl 
  Title The tau-contamination of the golden muon sample at the Neutrino Factory Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal (down) J. High Energy Phys.  
  Volume 02 Issue 2 Pages 095 - 16pp  
  Keywords Neutrino Physics; Beyond Standard Model; CP violation  
  Abstract We study the contribution of nu(e) -> nu(tau) -> tau -> μtransitions to the wrong-sign muon sample of the golden channel of the Neutrino Factory. Muons from tau decays are not really a background, since they contain information from the oscillation signal, and represent a small fraction of the sample. However, if not properly handled they introduce serious systematic error, in particular if the detector/analysis are sensitive to muons of low energy. This systematic effect is particularly troublesome for large theta(13) >= 1 degrees and prevents the use of the Neutrino Factory as a precision facility for large theta(13). Such a systematic error disappears if the tau contribution to the golden muon sample is taken into account. The fact that the fluxes of the Neutrino Factory are exactly calculable permits the knowledge of the tau sample due to the nu(e) -> nu(tau) oscillation. We then compute the contribution to the muon sample arising from this sample in terms of the apparent muon energy. This requires the computation of a migration matrix M-ij which describes the contributions of the tau neutrinos of a given energy E-i, to the muon neutrinos of an apparent energy E-j. We demonstrate that applying M-ij to the data permits the full correction of the otherwise intolerable systematic error.  
  Address [Donini, A.] Univ Autonoma Madrid, CSIC, IFT, E-28049 Madrid, Spain, Email: andrea.donini@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287939200023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 621  
Permanent link to this record
 

 
Author Barenboim, G.; Rasero, J. url  doi
openurl 
  Title Baryogenesis from a right-handed neutrino condensate Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal (down) J. High Energy Phys.  
  Volume 03 Issue 3 Pages 097 - 15pp  
  Keywords Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.  
  Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295300025 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 622  
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Pena-Garay, C. url  doi
openurl 
  Title Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal (down) J. High Energy Phys.  
  Volume 04 Issue 4 Pages 066 - 28pp  
  Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries  
  Abstract We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production phi(0)(e) : phi(0)(mu) : phi(0)(tau) = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, phi(mu), and for the flavour ratios at Earth, R = phi(mu)/phi(e) and S = phi(tau)/phi(mu). CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of phi(mu), R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10(-29) – 10(-27) GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.  
  Address [Bustamante, M.; Gago, A. M.] Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru, Email: mbustamante@pucp.edu.pe  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277473100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 455  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva