toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Addazi, A. et al; Martinez-Mirave, P.; Mitsou, V.A.; Palomares-Ruiz, S.; Tortola, M.; Zornoza, J.D. url  doi
openurl 
  Title Quantum gravity phenomenology at the dawn of the multi-messenger era-A review Type Journal Article
  Year 2022 Publication Progress in Particle and Nuclear Physics Abbreviated Journal (down) Prog. Part. Nucl. Phys.  
  Volume 125 Issue Pages 103948 - 119pp  
  Keywords Lorentz invariance violation and deformation; Gamma-ray astronomy; Cosmic neutrinos; Ultra-high-energy cosmic rays; Gravitational waves  
  Abstract The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.  
  Address [Addazi, A.] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: jcarmona@unizar.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000830343400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5312  
Permanent link to this record
 

 
Author Albaladejo, M.; Bibrzycki, L.; Dawid, S.M.; Fernandez-Ramirez, C.; Gonzalez-Solis, S.; Hiller Blin, A.N.; Jackura, A.W.; Mathieu, V.; Mikhasenko, M.; Make, V.I.; Passemar, E.; Pilloni, A.; Rodas, A.; Silva-Castro, J.A.; Smith, W.A.; Szczepaniak, A.P.; Winney, D. url  doi
openurl 
  Title Novel approaches in hadron spectroscopy Type Journal Article
  Year 2022 Publication Progress in Particle and Nuclear Physics Abbreviated Journal (down) Prog. Part. Nucl. Phys.  
  Volume 127 Issue Pages 103981 - 75pp  
  Keywords Hadron spectroscopy; Exotic hadrons; Three-body scattering; Resonance production  
  Abstract The last two decades have witnessed the discovery of a myriad of new and unexpected hadrons. The future holds more surprises for us, thanks to new-generation experiments. Understanding the signals and determining the properties of the states requires a parallel theoretical effort. To make full use of available and forthcoming data, a careful amplitude modeling is required, together with a sound treatment of the statistical uncertainties, and a systematic survey of the model dependencies. We review the contributions made by the Joint Physics Analysis Center to the field of hadron spectroscopy.  
  Address [Albaladejo, Miguel; Blin, Astrid N. Hiller; Jackura, Andrew W.; Mokeev, Victor, I; Passemar, Emilie; Rodas, Arkaitz; Szczepaniak, Adam P.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr & Phys Div, Newport News, VA 23606 USA, Email: alessandro.pilloni@unime.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000883770300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5422  
Permanent link to this record
 

 
Author Nieves, J.; Feijoo, A.; Albaladejo, M.; Du, M.L. url  doi
openurl 
  Title Lowest-lying 1/2- and 3/2- ΛQ resonances: From the strange to the bottom sectors Type Journal Article
  Year 2024 Publication Progress in Particle and Nuclear Physics Abbreviated Journal (down) Prog. Part. Nucl. Phys.  
  Volume 137 Issue Pages 104118 - 23pp  
  Keywords Heavy quark symmetry; Constituent quark-model; Molecule; Charmed; Bottomed  
  Abstract We present a detailed study of the lowest-lying 1/2(-) and 3/2(-) Lambda Q resonances both in the heavy 2 2 quark (bottom and charm) and the strange sectors. We have paid special attention to the interplay between the constituent quark-model and chiral baryon-meson degrees of freedom, which are coupled using a unitarized scheme consistent with leading-order heavy quark symmetries. We show that the Lambda(b)(5912) [J(P) = 1/2(-)], Lambda(b)(5920) [J(P) = 3/2(-)] and the Lambda(c)(2625) [J(P) = 3/2-], and the Lambda(1520) [J(P) = 3/2(-)] admitting larger breaking corrections, are heavyquark spin-flavor siblings. They can be seen as dressed quark-model states with Sigma Q(()*()) pi molecular components of the order of 30%. The J(P)=1(-) Lambda(2595) has, however, a higher molecular 2 probability of at least 50%, and even values greater than 70% can be easily accommodated. This is because it is located almost on top of the threshold of the Sigma(c)pi pair, which largely influences its properties. Although the light degrees of freedom in this resonance would be coupled to spin-parity 1(-) as in the Lambda(b)(5912), Lambda(b)(5920) and Lambda(c)(2625), the Lambda(c)(2595) should not be considered as a heavy-quark spin-flavor partner of the former ones. We also show that the Lambda(1405) chiral two-pole pattern does not have analogs in the 1 – charmed and bottomed sectors, because the 2 N D-(*()) and N (B) over bar (()*()) channels do not play for heavy quarks the decisive role that the N (K) over bar does in the strange sector, and the notable influence of the bare quark-model states for the charm and bottom resonances. Finally, we predict the existence of two Lambda(b)(6070) and two Lambda(c)(2765) heavy-quark spin and flavor sibling odd parity states.  
  Address [Nieves, J.; Feijoo, A.; Albaladejo, M.] Inst Fis Corpuscular, Ctr Mixto, CSIC UV, Valencia, Spain, Email: jmnieves@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001243410100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6153  
Permanent link to this record
 

 
Author Hernandez, P.; Pena, C.; Ramos, A.; Gomez-Cadenas, J.J. url  doi
openurl 
  Title A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times Type Journal Article
  Year 2021 Publication Plos One Abbreviated Journal (down) PLoS One  
  Volume 16 Issue 2 Pages e0244107 - 22pp  
  Keywords  
  Abstract The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.  
  Address [Hernandez, Pilar] Univ Valencia, Dept Fis Teor, Valencia, Spain, Email: m.pilar.hernandez@uv.es  
  Corporate Author Thesis  
  Publisher Public Library Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000616739700053 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4750  
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title The Hawking Effect in the Particles-Partners Correlations Type Journal Article
  Year 2023 Publication Physics Abbreviated Journal (down) Physics  
  Volume 5 Issue 4 Pages 968-982  
  Keywords quantum fields in curved space; black holes; Hawking radiation; correlations across the horizon  
  Abstract We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001130983900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5858  
Permanent link to this record
 

 
Author Pajtler, M.V. et al; Gadea, A. doi  openurl
  Title Excited states of Y-90,Y-92,Y-94 populated in Zr-90+Pb-208 multinucleon transfer reaction Type Journal Article
  Year 2021 Publication Physica Scripta Abbreviated Journal (down) Phys. Scr.  
  Volume 96 Issue 3 Pages 035305 - 7pp  
  Keywords multinucleon transfer reactions; gamma spectroscopy; magnetic spectrometers; gamma-ray spectrometers  
  Abstract Multinucleon transfer reactions in Zr-90+Pb-208 have been studied via fragment-gamma coincidences, employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. An analysis on Y isotopes has been carried out incorporating spectroscopic as well as reaction mechanism aspects. New gamma transitions have been observed in Y-94, confirming the findings of recent studies where nuclei were produced via fission of uranium, and a comparison with near-by Y-90,Y-92 isotopes populated in the same reaction has been discussed. Experimental cross sections have been extracted and compared with the GRAZING calculations, showing a fair agreement along the neutron pick-up side. The results confirm how multinucleon transfer reactions are a suitable mechanism for the study of neutron-rich nuclei.  
  Address [Pajtler, M. Varga] Univ Osijek, Dept Phys, Osijek, Croatia, Email: Suzana.Szilner@irb.hr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000611517400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4694  
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Reis, J.A.A.S.; Lisboa-Santos, L. url  doi
openurl 
  Title Thermodynamics of a quantum ring modified by Lorentz violation Type Journal Article
  Year 2023 Publication Physica Scripta Abbreviated Journal (down) Phys. Scr.  
  Volume 98 Issue 6 Pages 065943 - 13pp  
  Keywords quantum ring; thermodynamic properties; Lorentz violation  
  Abstract In this work, we investigate the consequences of Lorentz-violating terms in the thermodynamic properties of a 1-dimensional quantum ring. In particular, we use the ensemble theory to obtain our results of interest. The thermodynamic functions as well as the spin currents are calculated as a function of the temperature. We observe that parameter xi, which triggers the Lorentz symmetry breaking, plays a major role in low temperature regime. Finally, depending on the configuration of the system, electrons can rotate in two different directions: clockwise and counterclockwise.  
  Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000989669300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5556  
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Neutral Bremsstrahlung Emission in Xenon Unveiled Type Journal Article
  Year 2022 Publication Physical Review X Abbreviated Journal (down) Phys. Rev. X  
  Volume 12 Issue 2 Pages 021005 - 23pp  
  Keywords  
  Abstract We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about 10(-2) photon/e(-) cm(-1) bar(-1) at pressure-reduced electric field values of 50 V cm(-1) bar(-1) to above 3 x 10(-1) photon/e(-) cm(-1) bar(-1) at 500 V cm(-1) bar(-1). Above 1.5 kV cm(-1) bar(-1), values that are typically employed for electroluminescence, it is estimated that NBrS is present with an intensity around 1 photon/e(-) cm(-1) bar(-1), which is about 2 orders of magnitude lower than conventional, excimer-based electroluminescence. Despite being fainter than its excimeric counterpart, our calculations reveal that NBrS causes luminous backgrounds that can interfere, in either gas or liquid phase, with the ability to distinguish and/or to precisely measure low primary-scintillation signals (S1). In particular, we show this to be the case in the "buffer region, where keeping the electric field below the electroluminescence threshold does not suffice to extinguish secondary scintillation. The electric field leakage in this region should be mitigated to avoid intolerable levels of NBrS emission. Furthermore, we show that this new source of light emission opens up a viable path toward obtaining S2 signals for discrimination purposes in future single-phase liquid TPCs for neutrino and dark matter physics, with estimated yields up to 20-50 photons/e(-) cm(-1).  
  Address [Henriques, C. A. O.; Teixeira, J. M. R.; Monteiro, C. M. B.; Fernandes, A. F. M.; Fernandes, L. M. P.; Freitas, E. D. C.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, ILIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: henriques@uc.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000792590100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5220  
Permanent link to this record
 

 
Author Karuseichyk, I.; Sorelli, G.; Walschaers, M.; Treps, N.; Gessner, M. doi  openurl
  Title Resolving mutually-coherent point sources of light with arbitrary statistics Type Journal Article
  Year 2022 Publication Physical Review Research Abbreviated Journal (down) Phys. Rev. Res.  
  Volume 4 Issue 4 Pages 043010 - 11pp  
  Keywords  
  Abstract We analyze the problem of resolving two mutually coherent point sources with arbitrary quantum statistics, mutual phase, and relative and absolute intensity. We use a sensitivity measure based on the method of moments and compare direct imaging with spatial-mode demultiplexing (SPADE), analytically proving advantage of the latter. We show that the moment-based sensitivity of SPADE saturates the quantum Fisher information for all known cases, even for non-Gaussian states of the sources.  
  Address [Karuseichyk, Ilya; Sorelli, Giacomo; Walschaers, Mattia; Treps, Nicolas] Univ PSL, Sorbonne Univ, Coll France, Lab Kastler Brossel,ENS,CNRS, 4 Pl Jussieu, F-75252 Paris, France, Email: ilya.karuseichyk@lkb.upmc.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000876858200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5400  
Permanent link to this record
 

 
Author Lasa-Alonso, J.; Olmos-Trigo, J.; Devescovi, C.; Hernandez, P.; Garcia-Etxarri, A.; Molina-Terriza, G. url  doi
openurl 
  Title Resonant helicity mixing of electromagnetic waves propagating through matter Type Journal Article
  Year 2023 Publication Physical Review Research Abbreviated Journal (down) Phys. Rev. Res.  
  Volume 5 Issue 2 Pages 023116 - 8pp  
  Keywords  
  Abstract Dual scatterers preserve the helicity of an incident field, whereas antidual scatterers flip it completely. In this setting of linear electromagnetic scattering theory, we provide a completely general proof on the nonexistence of passive antidual scatterers. However, we show that scatterers fulfilling the refractive index matching condition flip the helicity of the fields very efficiently without being in contradiction with the law of energy conservation. Moreover, we find that this condition is paired with the impedance matching condition in several contexts of electromagnetism and, in particular, within Fresnel's and Mie's scattering problems. Finally, we show that indexmatched media induce a resonant helicity mixing on the propagating electromagnetic waves. We reach this conclusion by identifying that the refractive index matching condition leads to the phenomenon of avoided crossing.  
  Address [Lasa-Alonso, Jon; Molina-Terriza, Gabriel] Ctr Fis Mat, Paseo Manuel Lardizabal 5, Donostia San Sebastian 20018, Spain, Email: jonqnanolab@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000999546300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5856  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva