toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Belchior, F.M.; Maluf, R. url  doi
openurl 
  Title Duality between the Maxwell-Chern-Simons and self-dual models in very special relativity Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B  
  Volume 855 Issue Pages 138794 - 7pp  
  Keywords Duality; Very special relativity; Maxwell-Chern-Simons theory  
  Abstract This work investigates the classical and quantum duality between the SIM (1)-Maxwell-Chern-Simons (MCS) model and its self -dual counterpart. Initially, we focus on free -field cases to establish equivalence through two distinct approaches: comparing the equations of motion and utilizing the master Lagrangian method. In both instances, the classical correspondence between the self -dual and MCS dual fields undergoes modifications due to very special relativity (VSR). Specifically, the duality is established when the associated VSR-mass parameters are identical, and the dual field is introduced through a non -local VSR correction. Furthermore, we analyze the duality when the self -dual model is minimally coupled to fermions. As a result, we demonstrate that Thirring-like interactions, corrected for non -local VSR contributions, are included in the MCS model. Additionally, we establish the quantum equivalence of the models by performing a functional integration of the fields and comparing the resulting effective Lagrangians.  
  Address [Belchior, Fernando M.; Maluf, Roberto, V] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001259074700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6174  
Permanent link to this record
 

 
Author Heidari, N.; Hassanabadi, H.; Araujo Filho, A.A.; Kriz, J.; Zare, S.; Porfirio, P.J. url  doi
openurl 
  Title Gravitational signatures of a non-commutative stable black hole Type Journal Article
  Year 2024 Publication Physics of the Dark Universe Abbreviated Journal (down) Phys. Dark Universe  
  Volume 43 Issue Pages 101382 - 13pp  
  Keywords Non-commutativity; Black hole; Shadows; Geodesics  
  Abstract This work investigates several key aspects of a non-commutative theory with mass deformation. We calculate thermodynamic properties of the system and compare our results with recent literature. We examine the quasinormal modes of massless scalar perturbations using two approaches: the WKB approximation and the Poschl-Teller fitting method. Our results indicate that stronger non-commutative parameters lead to slower damping oscillations of gravitational waves and higher partial absorption cross sections. Furthermore, we study the geodesics of massless and massive particles, highlighting that the non-commutative parameter (R) significantly impacts the paths of light and event horizons. Also, we calculate the shadows, which show that larger values of (R) correspond to larger shadow radii, and provide some constraints on (R) applying the observation of Sgr A* from the Event Horizon Telescope. Finally, we explore the deflection angle in this context.  
  Address [Heidari, N.; Hassanabadi, H.] Shahrood Univ Technol, Fac Phys, Shahrood, Iran, Email: heidari.n@gmail.com;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001126934800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5857  
Permanent link to this record
 

 
Author Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J. url  doi
openurl 
  Title On metric-affine bumblebee model coupled to scalar matter Type Journal Article
  Year 2024 Publication Nuclear Physics B Abbreviated Journal (down) Nucl. Phys. B  
  Volume 1004 Issue Pages 116577 - 10pp  
  Keywords  
  Abstract We consider the coupling of the metric-affine bumblebee gravity model to scalar matter and calculate the lower -order contributions to two -point functions of bumblebee and scalar fields in the weak gravity approximation. We also obtain the one -loop effective potentials for both scalar and vector fields.  
  Address [Nascimento, J. R.; Petrov, A. Yu.; Porfirio, P. J.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, PB, Brazil, Email: jroberto@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001248177100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6157  
Permanent link to this record
 

 
Author Weber, M. et al; Esperante, D. doi  openurl
  Title DONES EVO: Risk mitigation for the IFMIF-DONES facility Type Journal Article
  Year 2024 Publication Nuclear Materials and Energy Abbreviated Journal (down) Nucl. Mater. Energy  
  Volume 38 Issue Pages 101622 - 5pp  
  Keywords Signal Transmission Improvement; RF Conditioning Optimisation; Beam Extraction Device; Medical Isotopes Production; Lithium Purification; Critical Components Manufacture  
  Abstract The International Fusion Materials Irradiation Facility- DEMO Oriented Neutron Source (IFMIF-DONES) is a scientific infrastructure aimed to provide an intense neutron source for the qualification of materials to be used in future fusion power reactors. Its implementation is critical for the construction of the fusion DEMOnstration Power Plant (DEMO). IFMIF-DONES is a unique facility requiring a broad set of technologies. Although most of the necessary technologies have already been validated, there are still some aspects that introduce risks in the evolution of the project. In order to mitigate these risks, a consortium of companies, with the support of research centres and the funding of the CDTI (Centre for the Development of Industrial Technology and Innovation), has launched the DONES EVO Programme, which comprises six lines of research: center dot Improvement of signal transmission and integrity (planning and integration risks) center dot Optimisation of RF conditioning processes (planning and reliability risks) center dot Development of a reliable beam extraction device (reliability risks) center dot Development of technologies for the production of medical isotopes (reliability risks) center dot Improvement of critical parts of the lithium purification system (safety and reliability risks) center dot Validation of the manufacture of critical components with special materials (reliability risk). DONES EVO will focus on developing the appropriate response to the risks identified in the IFMIFDONES project through research and prototyping around the associated technologies.  
  Address [Weber, M.; Ibarra, A.; Maldonado, R.; Podadera, I.] DONES Espana Consortium, IFMIF, Granada, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202783400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6075  
Permanent link to this record
 

 
Author Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U. doi  openurl
  Title Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
  Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A  
  Volume 1064 Issue Pages 169457 - 9pp  
  Keywords HL-LHC; ATLAS; ITk; Strip sensors  
  Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.  
  Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001249611300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6158  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva