|   | 
Details
   web
Records
Author van Beekveld, M.; Caron, S.; Ruiz de Austri, R.
Title The current status of fine-tuning in supersymmetry Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 01 Issue 1 Pages 147 - 41pp
Keywords Supersymmetry Phenomenology
Abstract In this paper, we minimize and compare two different fine-tuning measures in four high-scale supersymmetric models that are embedded in the MSSM. In addition, we determine the impact of current and future dark matter direct detection and collider experiments on the fine-tuning. We then compare the low-scale electroweak measure with the high-scale Barbieri-Giudice measure. We find that they reduce to the same value when the higgsino parameter drives the degree of fine-tuning. We also find spectra where the high-scale measure turns out to be lower than the low-scale measure. Depending on the high-scale model and fine-tuning definition, we find a minimal fine-tuning of 3-38 (corresponding to O(10-1)%) for the low-scale measure, and 63-571 (corresponding to O(1-0.1)%) for the high-scale measure. We stress that it is too early to conclude on the fate of supersymmetry, based only on the fine-tuning paradigm.
Address [van Beekveld, Melissa; Caron, Sascha] Radboud Univ Nijmegen, Theoret High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000512011100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4275
Permanent link to this record
 

 
Author Aguilar-Saavedra, J.A.; Casas, J.A.; Quilis, J.; Ruiz de Austri, R.
Title Multilepton dark matter signals Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 04 Issue 4 Pages 069 - 24pp
Keywords Beyond Standard Model; Gauge Symmetry
Abstract The signatures of dark matter at the LHC commonly involve, in simplified scenarios, the production of a single particle plus large missing energy, from the undetected dark matter. However, in Z ' -portal scenarios anomaly cancellation requires the presence of extra dark leptons in the dark sector. We investigate the signatures of the minimal scenarios of this kind, which involve cascade decays of the extra Z ' boson into the dark leptons, identifying a four-lepton signal as the most promising one. We estimate the sensitivity to this signal at the LHC, the high-luminosity LHC upgrade, a possible high-energy upgrade, as well as a future circular collider. For Z ' couplings compatible with current dijet constraints the multilepton signals can reach the 5 sigma level already at Run 2 of the LHC. At future colliders, couplings two orders of magnitude smaller than the electroweak coupling can be probed with 5 sigma sensitivity.
Address [Aguilar-Saavedra, J. A.; Casas, J. A.; Quilis, J.] Univ Autonoma Madrid, IFT, CSIC, E-28049 Madrid, Spain, Email: jaas@ugr.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000528689700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4384
Permanent link to this record
 

 
Author Ellis, J.; Gomez, M.E.; Lola, S.; Ruiz de Austri, R.; Shafi, Q.
Title Confronting grand unification with lepton flavour violation, dark matter and LHC data Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 09 Issue 9 Pages 197 - 29pp
Keywords Supersymmetry Phenomenology
Abstract We explore possible signatures for charged lepton flavour violation (LFV), sparticle discovery at the LHC and dark matter (DM) searches in grand unified theories (GUTs) based on SU(5), flipped SU(5) (FSU(5)) and SU(4)(c) x SU(2)(L) x SU(2)(R) (4-2-2). We assume that soft supersymmetry-breaking terms preserve the group symmetry at some high input scale, and focus on the non-universal effects on different matter representations generated by gauge interactions at lower scales, as well as the charged LFV induced in Type-1 see-saw models of neutrino masses. We identify the different mechanisms that control the relic DM density in the various GUT models, and contrast their LFV and LHC signatures. The SU(5) and 4-2-2 models offer good detection prospects both at the LHC and in LFV searches, though with different LSP compositions, and the SU(5) and FSU(5) models offer LFV within the current reach. The 4-2-2 model allows chargino and gluino coannihilations with neutralinos, and the former offer good detection prospects for both the LHC and LFV, while gluino coannihilations lead to lower LFV rates. Our results indicate that LFV is a powerful tool that complements LHC and DM searches, providing significant insights into the sparticle spectra and neutrino mass parameters in different models.
Address [Ellis, J.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: John.Ellis@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000576973000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4566
Permanent link to this record
 

 
Author van Beekveld, M.; Caron, S.; Hendriks, L.; Jackson, P.; Leinweber, A.; Otten, S.; Patrick, R.; Ruiz de Austri, R.; Santoni, M.; White, M.
Title Combining outlier analysis algorithms to identify new physics at the LHC Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 09 Issue 9 Pages 024 - 33pp
Keywords Phenomenological Models; Supersymmetry Phenomenology
Abstract The lack of evidence for new physics at the Large Hadron Collider so far has prompted the development of model-independent search techniques. In this study, we compare the anomaly scores of a variety of anomaly detection techniques: an isolation forest, a Gaussian mixture model, a static autoencoder, and a beta-variational autoencoder (VAE), where we define the reconstruction loss of the latter as a weighted combination of regression and classification terms. We apply these algorithms to the 4-vectors of simulated LHC data, but also investigate the performance when the non-VAE algorithms are applied to the latent space variables created by the VAE. In addition, we assess the performance when the anomaly scores of these algorithms are combined in various ways. Using supersymmetric benchmark points, we find that the logical AND combination of the anomaly scores yielded from algorithms trained in the latent space of the VAE is the most effective discriminator of all methods tested.
Address [van Beekveld, Melissa] Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, 20 Pks Rd, Oxford OX1 3PU, England, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000695421600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4973
Permanent link to this record
 

 
Author Balazs, C. et al; Mamuzic, J.; Ruiz de Austri, R.
Title A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 05 Issue 5 Pages 108 - 46pp
Keywords Phenomenology of Field Theories in Higher Dimensions; Supersymmetry Phenomenology
Abstract Optimisation problems are ubiquitous in particle and astrophysics, and involve locating the optimum of a complicated function of many parameters that may be computationally expensive to evaluate. We describe a number of global optimisation algorithms that are not yet widely used in particle astrophysics, benchmark them against random sampling and existing techniques, and perform a detailed comparison of their performance on a range of test functions. These include four analytic test functions of varying dimensionality, and a realistic example derived from a recent global fit of weak-scale supersymmetry. Although the best algorithm to use depends on the function being investigated, we are able to present general conclusions about the relative merits of random sampling, Differential Evolution, Particle Swarm Optimisation, the Covariance Matrix Adaptation Evolution Strategy, Bayesian Optimisation, Grey Wolf Optimisation, and the PyGMO Artificial Bee Colony, Gaussian Particle Filter and Adaptive Memory Programming for Global Optimisation algorithms.
Address [Balazs, Csaba] Monash Univ, Sch Phys & Astron, Melbourne, Vic 3800, Australia, Email: bstienen@science.ru.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000762408900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5149
Permanent link to this record
 

 
Author Caron, S.; Ruiz de Austri, R.; Zhang, Z.Y.
Title Mixture-of-Theories training: can we find new physics and anomalies better by mixing physical theories? Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 03 Issue 3 Pages 004 - 37pp
Keywords Specific BSM Phenomenology; Supersymmetry
Abstract Model-independent search strategies have been increasingly proposed in recent years because on the one hand there has been no clear signal for new physics and on the other hand there is a lack of a highly probable and parameter-free extension of the standard model. For these reasons, there is no simple search target so far. In this work, we try to take a new direction and ask the question: bearing in mind that we have a large number of new physics theories that go beyond the Standard Model and may contain a grain of truth, can we improve our search strategy for unknown signals by using them “in combination”? In particular, we show that a signal hypothesis based on a large, intermingled set of many different theoretical signal models can be a superior approach to find an unknown BSM signal. Applied to a recent data challenge, we show that “mixture-of-theories training” outperforms strategies that optimize signal regions with a single BSM model as well as most unsupervised strategies. Applications of this work include anomaly detection and the definition of signal regions in the search for signals of new physics.
Address [Caron, Sascha; Zhang, Zhongyi] Radboud Univ Nijmegen, High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000943095100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5494
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P.
Title The Strong Force meets the Dark Sector: a robust estimate of QCD uncertainties for anti-matter dark matter searches Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 02 Issue 2 Pages 119 - 48pp
Keywords Cosmic Rays; Particle Nature of Dark Matter; Specific QCD Phenomenology
Abstract In dark-matter annihilation channels to hadronic final states, stable particles – such as positrons, photons, antiprotons, and antineutrinos – are produced via complex sequences of phenomena including QED/QCD radiation, hadronisation, and hadron decays. These processes are normally modelled by Monte Carlo (MC) event generators whose limited accuracy imply intrinsic QCD uncertainties on the predictions for indirect-detection experiments like Fermi-LAT, Pamela, IceCube or Ams-02. In this article, we perform a comprehensive analysis of QCD uncertainties, meaning both perturbative and nonperturbative sources of uncertainty are included – estimated via variations of MC renormalization-scale and fragmentation-function parameters, respectively – in antimatter spectra from dark-matter annihilation, based on parametric variations of the Pythia 8 event generator. After performing several retunings of light-quark fragmentation functions, we define a set of variations that span a conservative estimate of the QCD uncertainties. We estimate the effects on antimatter spectra for various annihilation channels and final-state particle species, and discuss their impact on fitted values for the dark-matter mass and thermally-averaged annihilation cross section. We find dramatic impacts which can go up to O(10%) for the annihilation cross section. We provide the spectra in tabulated form including QCD uncertainties and code snippets to perform fast dark-matter fits, in this github repository.
Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Particle Theory & Cosmol Grp, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001165531600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5956
Permanent link to this record
 

 
Author Beenakker, W.; Caron, S.; Kip, J.; Ruiz de Austri, R.; Zhang, Z.
Title New energy spectra in neutrino and photon detectors to reveal hidden dark matter signals Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 11 Issue 11 Pages 028 - 13pp
Keywords
Abstract Neutral particles capable of travelling cosmic distances from a source to detectors on Earth are limited to photons and neutrinos. Examination of the Dark Matter annihilation/decay spectra for these particles reveals the presence of continuum spectra (e.g. due to fragmentation and W or Z decay) and peaks (due to direct annihilations/decays). However, when one explores extensions of the Standard Model (BSM), unexplored spectra emerge that differ significantly from those of the Standard Model (SM) for both neutrinos and photons. In this paper, we argue for the inclusion of important spectra that include peaks as well as previously largely unexplored entities such as boxes and combinations of box, peak and continuum decay spectra.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6085
Permanent link to this record
 

 
Author Otten, S.; Caron, S.; de Swart, W.; van Beekveld, M.; Hendriks, L.; van Leeuwen, C.; Podareanu, D.; Ruiz de Austri, R.; Verheyen, R.
Title Event generation and statistical sampling for physics with deep generative models and a density information buffer Type Journal Article
Year 2021 Publication Nature Communications Abbreviated Journal (up) Nat. Commun.
Volume 12 Issue 1 Pages 2985 - 16pp
Keywords
Abstract Simulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but to also ensure that these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with several generative machine learning models to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e(+)e(-)-> Z -> l(+)l(-) and pp -> tt<mml:mo><overbar></mml:mover> including the decay of the top quarks and a simulation of the detector response. By buffering density information of encoded Monte Carlo events given the encoder of a Variational Autoencoder we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g., for the phase space integration of matrix elements in quantum field theories. Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.
Address [Otten, Sydney; Caron, Sascha; de Swart, Wieske; van Beekveld, Melissa; Hendriks, Luc; Verheyen, Rob] Radboud Univ Nijmegen, Inst Math Astro & Particle Phys IMAPP, Nijmegen, Netherlands, Email: Sydney.Otten@ru.nl
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes WOS:000658761600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4862
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title Search for magnetic monopoles produced via the Schwinger mechanism Type Journal Article
Year 2022 Publication Nature Abbreviated Journal (up) Nature
Volume 602 Issue 7895 Pages 63-67
Keywords
Abstract Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism(1). By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist(2). Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model(3-7) but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size(8,9) and strong coupling to photons(2,10). Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe(11). It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 x 10(9), of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000750429600019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5191
Permanent link to this record