|   | 
Details
   web
Records
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J.; Zou, B.S.
Title Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV Type Journal Article
Year 2023 Publication Science Bulletin Abbreviated Journal (down) Sci. Bull.
Volume 68 Issue 7 Pages 688-697
Keywords Charmonium(-like) states; Hadronic molecules; Heavy quark spin symmetry; Exotic hadrons; Hadron-hadron interactions
Abstract We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.
Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun; Zou, Bing-Song] Inst Theoret Phys, Chinese Acad Sci, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-9273 ISBN Medium
Area Expedition Conference
Notes WOS:000985290600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5520
Permanent link to this record
 

 
Author Masud, M.; Bishai, M.; Mehta, P.
Title Extricating New Physics Scenarios at DUNE with Higher Energy Beams Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal (down) Sci Rep
Volume 9 Issue Pages 352 - 9pp
Keywords
Abstract The proposed Deep Underground Neutrino Experiment (DUNE) utilizes a wide-band on-axis tunable muon-(anti) neutrino beam with a baseline of 1300 km to search for CP violation with high precision. Given the long baseline, DUNE is also sensitive to effects due to matter induced non-standard neutrino interactions (NSI) which can interfere with the standard three-flavor oscillation paradigm. Hence it is desirable to design strategies to disentangle effects due to NSI from standard oscillations. In this article, we exploit the tunability of the DUNE neutrino beam over a wide-range of energies to devise an experimental strategy for separating oscillation effects due to NSI from the standard three-flavor oscillation scenario. Using chi(2) analysis, we obtain an optimal combination of beam tunes and distribution of run times in neutrino and anti-neutrino modes that would enable DUNE to isolate new physics scenarios from the standard. We can distinguish scenarios at 3 sigma (5 sigma) level for almost all (similar to 50%) values of delta. To the best of our knowledge, our strategy is entirely new and has not been reported elsewhere.
Address [Masud, Mehedi] Univ Valencia, CSIC, Inst Fis Corpuscular, Astroparticle & High Energy Phys Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2E, E-46980 Valencia, Spain, Email: masud@ific.uv.es;
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000456392400033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3891
Permanent link to this record
 

 
Author Hatifi, M.; Di Molfetta, G.; Debbasch, F.; Brachet, M.
Title Quantum walk hydrodynamics Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal (down) Sci Rep
Volume 9 Issue Pages 2989 - 7pp
Keywords
Abstract A simple Discrete-Time Quantum Walk (DTQW) on the line is revisited and given an hydrodynamic interpretation through a novel relativistic generalization of the Madelung transform. Numerical results show that suitable initial conditions indeed produce hydrodynamical shocks and that the coherence achieved in current experiments is robust enough to simulate quantum hydrodynamical phenomena through DTQWs. An analytical computation of the asymptotic quantum shock structure is presented. The non-relativistic limit is explored in the Supplementary Material (SM).
Address [Hatifi, Mohamed] Aix Marseille Univ, CNRS, Ecole Cent Marseille, Inst Fresnel,UMR 7249, F-13013 Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000459799800138 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3923
Permanent link to this record
 

 
Author Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A.
Title From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular Quantum Walks Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal (down) Sci Rep
Volume 9 Issue Pages 10904 - 10pp
Keywords
Abstract A discrete-time Quantum Walk (QW) is an operator driving the evolution of a single particle on the lattice, through local unitaries. In a previous paper, we showed that QWs over the honeycomb and triangular lattices can be used to simulate the Dirac equation. We apply a spacetime coordinate transformation upon the lattice of this QW, and show that it is equivalent to introducing spacetime-dependent local unitaries-whilst keeping the lattice fixed. By exploiting this duality between changes in geometry, and changes in local unitaries, we show that the spacetime-dependent QW simulates the Dirac equation in (2 + 1)-dimensional curved spacetime. Interestingly, the duality crucially relies on the non linear-independence of the three preferred directions of the honeycomb and triangular lattices: The same construction would fail for the square lattice. At the practical level, this result opens the possibility to simulate field theories on curved manifolds, via the quantum walk on different kinds of lattices.
Address [Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France, Email: pablo.arrighi@univ-amu.fr;
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000477701800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4081
Permanent link to this record
 

 
Author Muñoz, E.; Ros, A.; Borja-Lloret, M.; Barrio, J.; Dendooven, P.; Oliver, J.F.; Ozoemelam, I.; Roser, J.; Llosa, G.
Title Proton range verification with MACACO II Compton camera enhanced by a neural network for event selection Type Journal Article
Year 2021 Publication Scientific Reports Abbreviated Journal (down) Sci Rep
Volume 11 Issue 1 Pages 9325 - 12pp
Keywords
Abstract The applicability extent of hadron therapy for tumor treatment is currently limited by the lack of reliable online monitoring techniques. An active topic of investigation is the research of monitoring systems based on the detection of secondary radiation produced during treatment. MACACO, a multi-layer Compton camera based on LaBr3 scintillator crystals and SiPMs, is being developed at IFIC-Valencia for this purpose. This work reports the results obtained from measurements of a 150 MeV proton beam impinging on a PMMA target. A neural network trained on Monte Carlo simulations is used for event selection, increasing the signal to background ratio before image reconstruction. Images of the measured prompt gamma distributions are reconstructed by means of a spectral reconstruction code, through which the 4.439 MeV spectral line is resolved. Images of the emission distribution at this energy are reconstructed, allowing calculation of the distal fall-off and identification of target displacements of 3 mm.
Address [Munoz, Enrique; Ros, Ana; Borja-Lloret, Marina; Barrio, John; Oliver, Josep F.; Roser, Jorge; Llosa, Gabriela] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000651603500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4836
Permanent link to this record