|   | 
Details
   web
Records
Author Olmo, G.J.
Title Palatini approach to modified gravity: f(R) theories and beyond Type Journal Article
Year 2011 Publication International Journal of Modern Physics D Abbreviated Journal (up) Int. J. Mod. Phys. D
Volume 20 Issue 4 Pages 413-462
Keywords Palatini formalism; modified gravity; cosmic speed-up; dark energy; dark matter; MOND; quantum gravity phenomenology; Hamiltonian formulation; stellar structure; Cauchy problem; solar system tests
Abstract We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
Address [Olmo, Gonzalo J.] Univ Valencia CSIC, Dept Fis Teor, Valencia, Spain, Email: gonzalo.olmo@uv.es
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000290228200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 961
Permanent link to this record
 

 
Author Cervantes-Cota, J.L.; de Putter, R.; Linder, E.V.
Title Induced gravity and the attractor dynamics of dark energy/dark matter Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 019 - 20pp
Keywords modified gravity; dark energy theory
Abstract Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.
Address [Cervantes-Cota, Jorge L.] Inst Nacl Invest Nucl, Dept Fis, Mexico City 11801, DF, Mexico, Email: jorge.cervantes@inin.gob.mx
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000286930700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 533
Permanent link to this record
 

 
Author Gavela, M.B.; Lopez Honorez, L.; Mena, O.; Rigolin, S.
Title Dark coupling and gauge invariance Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 044 - 15pp
Keywords cosmological perturbation theory; dark energy theory; dark energy experiments
Abstract
Address [Gavela, M. B.; Lopez Honorez, L.] Univ Autonoma Madrid IFT UAM CSIC, Dept Fis Teor, Madrid 28049, Spain, Email: belen.gavela@uam.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000284825100044 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 316
Permanent link to this record
 

 
Author Lopez Honorez, L.; Reid, B.A.; Mena, O.; Verde, L.; Jimenez, R.
Title Coupled dark matter-dark energy in light of near universe observations Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 029 - 36pp
Keywords dark energy experiments; dark energy theory; cosmological parameters from LSS
Abstract Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified – and thus can be probed by a combination of tests for the expansion history and the growth of structure -, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inconsistency between reconstructed expansion history and growth may not uniquely indicate deviations from GR. Our low redshift constraints arise from cosmic velocities, redshift space distortions and dark matter abundance in galaxy voids. We find that current data constrain the dimensionless coupling to be vertical bar xi vertical bar < 0.2, but prospects from forthcoming data are for a significant improvement. Future, precise measurements of the Hubble constant, combined with high-precision constraints on the growth of structure, could provide the key to rule out dark coupling models which survive other tests. We shall exploit as well weak equivalence principle violation arguments, which have the potential to highly disfavour a broad family of coupled models.
Address [Lopez Honorez, Laura] UAM, CSIC, Dept Phys, Madrid 28049, Spain, Email: laura.lopez@uam.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000283576500007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 343
Permanent link to this record
 

 
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L.
Title The dark side of curvature Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 008 - 17pp
Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR
Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000276103000026 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 465
Permanent link to this record