|   | 
Details
   web
Records
Author Albaladejo, M.; Nieves, J.; Oset, E.; Sun, Z.F.; Liu, X.
Title Can X(5568) be described as a B-s pi, B(K)over-bar resonant state? Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal (up) Phys. Lett. B
Volume 757 Issue Pages 515-519
Keywords
Abstract The DO Collaboration has recently seen a resonant-like peak in the B-s pi invariant mass spectrum, claimed to be a new state called X(5568). Using a B-s pi-B (K) over bar coupled channel analysis, implementing unitarity, and with the interaction derived from Heavy Meson Chiral Perturbation Theory, we are able to reproduce the reported spectrum, with a pole that can be associated to the claimed X(5568) state, and with mass and width in agreement with the ones reported in the experimental analysis. However, if the T-matrix regularization is performed by means of a momentum cutoff, the value for the latter needed to reproduce the spectrum is Lambda = 2.80 +/- 0.04 GeV, which is much larger than a “natural” value Lambda similar or equal to 1 GeV. In view of this, it is difficult to interpret the nature of this new state. This state would not qualify as a resonance dynamically generated by the unitarity loops. Assuming the observed peak to correspond to a physical state, we make predictions for partners in the D, D*, and B* sectors. Their observation (or lack thereof) would shed light into this issue.
Address [Albaladejo, Miguel; Nieves, Juan; Oset, Eulogio; Sun, Zhi-Feng] Univ Valencia, CSIC, Inst Invest Paterna, Inst Fis Corpuscular IFIC,Ctr Mixto, Aptd 22085, E-46071 Valencia, Spain, Email: Miguel.Albaladejo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000376800300072 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2698
Permanent link to this record
 

 
Author Sun, Z.F.; Bayar, M.; Fernandez-Soler, P.; Oset, E.
Title Ds0*(2317)(+) in the decay of Bc into J/Psi DK Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal (up) Phys. Rev. D
Volume 93 Issue 5 Pages 054028 - 9pp
Keywords
Abstract In this paper we study the relationship between the D-s0*(2317)(+) resonance and the decay of the B-c meson into J/Psi DK. In this process, the B-c meson decays first into J/Psi and the quark pair c (s) over bar, and then the quark pair hadronizes into DK or D-s eta components, which undergo final state interaction. This final state interaction, generating the D-s0*(2317)(+) resonance, is described by the chiral unitary approach. With the parameters which allow us to match the pole position of the D-s0*(2317)(+), we obtain the DK invariant mass distribution of the decay B-c -> J/Psi DK, and also the rate for B-c -> J/Psi D-s0*(2317). The ratio of these two magnitudes is then predicted.
Address [Sun, Zhi-Feng; Fernandez-Soler, P.; Oset, E.] Univ Valencia, CSIC, Dept Fis Teor, Inst Invest Paterna,Ctr Mixto, Apartado 22085, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000372417900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2583
Permanent link to this record
 

 
Author Sun, Z.F.; Vicente Vacas, M.J.
Title Masses of doubly charmed baryons in the extended on-mass-shell renormalization scheme Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal (up) Phys. Rev. D
Volume 93 Issue 9 Pages 094002 - 8pp
Keywords
Abstract In this work, we investigate the mass corrections of the doubly charmed baryons up to (NLO)-L-2 in the extended-on-mass-shell (EOMS) renormalization scheme, comparing with the results of heavy baryon chiral perturbation theory. We find that the terms from the heavy baryon approach are a subset of those obtained in the EOMS scheme. By fitting the lattice data, we can determine the parameters (m) over tilde, alpha, c(1) and c(7) from the Lagrangian, while in the heavy baryon approach no information on c(1) can be obtained from the baryons mass. Correspondingly, the masses of m(Xi cc) and m(Omega cc) are predicted, in the EOMS scheme, extrapolating the results from different values of the charm quark and the pion masses of the lattice QCD calculations.
Address [Sun, Zhi-Feng] Univ Valencia, Ctr Mixto, CSIC, Inst Invest Paterna,Dept Fis Teor, Apartado 22085, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000375655000004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2667
Permanent link to this record
 

 
Author Sun, Z.F.; Xie, J.J.; Oset, E.
Title Bottom strange molecules with isospin 0 Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal (up) Phys. Rev. D
Volume 97 Issue 9 Pages 094031 - 9pp
Keywords
Abstract Using the local hidden gauge approach, we study the possibility of the existence of bottom strange molecular states with isospin 0. We find three bound states with spin parity 0(+), 1(+), and 2(+) generated by the (K) over bar *B* and omega B-s(*) interaction, among which the state with spin 2 can be identified as B(s2)(*()5840). In addition, we also study the (K) over bar *B* and omega B-s(*) interaction and find a bound state which can be associated to B-s1(5830). In addition, the (K) over barB*, eta B-s(*)(K) over barB, and eta B-s systems are studied, and two bound states are predicted. We expect that further experiments can confirm our predictions.
Address [Sun, Zhi-Feng] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China, Email: sunzf@lzu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000433912000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3615
Permanent link to this record
 

 
Author Hiller Blin, A.N.; Sun, Z.F.; Vicente Vacas, M.J.
Title Electromagnetic form factors of spin-1/2 doubly charmed baryons Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal (up) Phys. Rev. D
Volume 98 Issue 5 Pages 054025 - 13pp
Keywords
Abstract We study the electromagnetic form factors of the doubly charmed baryons, using covariant chiral perturbation theory within the extended on-mass-shell scheme. Vector-meson contributions are also taken into account. We present results for the baryon magnetic moments, charge, and magnetic radii. While some of the chiral Lagrangian parameters could be set to values determined in previous works, the available lattice results for Xi(+)(CC) and Omega(+)(CC) only allow for robust constraints on the low-energy constant combination, c(89) (= -1/3 c(8) + 4c(9)). The couplings of the doubly charmed baryons to the vector mesons have been estimated assuming the Okubo-Zweig-Iizuka rule. We also give the expressions for the form factors of the double-beauty baryons considering the masses predicted in the framework of quark models. A comparison of our results with those obtained in heavy baryon chiral perturbation theory at the same chiral order is made.
Address [Blin, Astrid N. Hiller] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany, Email: hillerbl@uni-mainz.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000445503600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3739
Permanent link to this record