|   | 
Details
   web
Records
Author Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Weilhammer, P.; Zontar, D.
Title Silicon detectors for combined MR-PET and MR-SPECT imaging Type Journal Article
Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 702 Issue Pages 88-90
Keywords PET; Silicon detectors; SPECT
Abstract Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.
Address [Studen, A.; Cindro, V.; Grosicar, B.; Grkovski, M.; Mikuz, M.; Zontar, D.] Jozef Stefan Inst, Ljubljana, Slovenia, Email: andrej.studen@ijs.si
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000314682300026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1331
Permanent link to this record
 

 
Author Grkovski, M.; Brzezinski, K.; Cindro, V.; Clinthorne, N.H.; Kagan, H.; Lacasta, C.; Mikuz, M.; Solaz, C.; Studen, A.; Weilhammer, P.; Zontar, D.
Title Evaluation of a high resolution silicon PET insert module Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 788 Issue Pages 86-94
Keywords Positron emission tomography; Silicon detectors; PET insert; Image reconstruction
Abstract Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm(2) pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (20) geometry with a Jaszczak phantom (rod diameters of 12-4.8 mm) Filled with F-18-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).
Address [Grkovski, Milan; Cindro, Vladimir; Mikuz, Marko; Studen, Andrej; Zontar, Dejan] Jozef Stefan Inst, Ljubljana, Slovenia, Email: milan.grkovski@ijs.si
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000354870700016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2232
Permanent link to this record
 

 
Author Studen, A.; Burdette, D.; Chesi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Kagan, H.; Lacasta, C.; Linhart, V.; Mikuz, M.; Stankova, V.; Weilhammer, P.; Zontar, D.
Title Timing performance of the silicon PET insert probe Type Journal Article
Year 2010 Publication Radiation Protection Dosimetry Abbreviated Journal (up) Radiat. Prot. Dosim.
Volume 139 Issue 1-3 Pages 199-203
Keywords
Abstract Simulation indicates that PET image could be improved by upgrading a conventional ring with a probe placed close to the imaged object. In this paper, timing issues related to a PET probe using high-resistivity silicon as a detector material are addressed. The final probe will consist of several (four to eight) 1-mm thick layers of silicon detectors, segmented into 1 x 1 mm(2) pads, each pad equivalent to an independent p + nn+ diode. A proper matching of events in silicon with events of the external ring can be achieved with a good timing resolution. To estimate the timing performance, measurements were performed on a simplified model probe, consisting of a single 1-mm thick detector with 256 square pads (1.4 mm side), coupled with two VATAGP7s, application-specific integrated circuits. The detector material and electronics are the same that will be used for the final probe. The model was exposed to 511 keV annihilation photons from an Na-22 source, and a scintillator (LYSO)-PMT assembly was used as a timing reference. Results were compared with the simulation, consisting of four parts: (i) GEANT4 implemented realistic tracking of electrons excited by annihilation photon interactions in silicon, (ii) calculation of propagation of secondary ionisation (electron-hole pairs) in the sensor, (iii) estimation of the shape of the current pulse induced on surface electrodes and (iv) simulation of the first electronics stage. A very good agreement between the simulation and the measurements were found. Both indicate reliable performance of the final probe at timing windows down to 20 ns.
Address [Studen, A.; Cindro, V.; Grosicar, B.; Mikuz, M.; Zontar, D.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia, Email: andrej.studen@ijs.si
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0144-8420 ISBN Medium
Area Expedition Conference
Notes ISI:000277738200035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 449
Permanent link to this record
 

 
Author Hoeschen, C.; Mattsson, S.; Cantone, M.C.; Mikuz, M.; Lacasta, C.; Ebel, G.; Clinthorne, N.; Giussani, A.
Title Minimising activity and dose with enhanced image quality by radiopharmaceutical administrations Type Journal Article
Year 2010 Publication Radiation Protection Dosimetry Abbreviated Journal (up) Radiat. Prot. Dosim.
Volume 139 Issue 1-3 Pages 250-253
Keywords
Abstract Owing to the introduction of new diagnostic procedures, such as computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT), the individual dose caused by medical exposures has grown rapidly in the last years. This is especially a subject to radiation protection for nuclear medical diagnosis, since in this case radiopharmaceuticals are administered to the patient, meaning not only a radiation exposure to the diseased tissue but also to the healthy tissues of large parts of the body. 'Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations' (MADEIRA) is a project cofunded by the European Commission within the Seventh Euratom Framework Programme that aims to improve three-dimensional (3D) nuclear medical imaging technologies significantly. MADEIRA is aiming to improve the efficacy and safety of 3D PET and SPECT functional imaging by optimising the spatial resolution and the signal-to-noise ratio, improving the knowledge of the temporal variation of the radiopharmaceuticals' uptake in and clearance from tumourous and healthy tissues, and evaluation of the corresponding patient dose. Using an optimised imaging procedure that improves the information gained per unit administered dose, MADEIRA aims especially to reduce the dose to healthy tissues of the patient. In this paper, an overall summary of the current achievements will be presented.
Address [Hoeschen, C.; Giussani, A.] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Radiat Protect, D-85764 Neuherberg, Germany, Email: christoph.hoeschen@helmholtz-muenchen.de
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0144-8420 ISBN Medium
Area Expedition Conference
Notes ISI:000277738200045 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 450
Permanent link to this record