|   | 
Details
   web
Records
Author Poley, L.; Stolzenberg, U.; Schwenker, B.; Frey, A.; Gottlicher, P.; Marinas, C.; Stanitzki, M.; Stelzer, B.
Title Mapping the material distribution of a complex structure in an electron beam Type Journal Article
Year 2021 Publication Journal of Instrumentation Abbreviated Journal (up) J. Instrum.
Volume 16 Issue 1 Pages P01010 - 33pp
Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors; Detector design and construction technologies and materials
Abstract The simulation and analysis of High Energy Physics experiments require a realistic simulation of the detector material and its distribution. The challenge is to describe all active and passive parts of large scale detectors like ATLAS in terms of their size, position and material composition. The common method for estimating the radiation length by weighing individual components, adding up their contributions and averaging the resulting material distribution over extended structures provides a good general estimate, but can deviate significantly from the material actually present. A method has been developed to assess its material distribution with high spatial resolution using the reconstructed scattering angles and hit positions of high energy electron tracks traversing an object under investigation. The study presented here shows measurements for an extended structure with a highly inhomogeneous material distribution. The structure under investigation is an End-of-Substructure-card prototype designed for the ATLAS Inner Tracker strip tracker – a PCB populated with components of a large range of material budgets and sizes. The measurements presented here summarise requirements for data samples and reconstructed electron tracks for reliable image reconstruction of large scale, inhomogeneous samples, choices of pixel sizes compared to the size of features under investigation as well as a bremsstrahlung correction for high material densities and thicknesses.
Address [Poley, L.; Stelzer, B.] Simon Fraser Univ, Dept Phys, Univ Dr, Burnaby, BC, Canada, Email: APoley@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000608273000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4687
Permanent link to this record
 

 
Author Andricek, L. et al; Lacasta, C.; Marinas, C.; Vos, M.
Title Intrinsic resolutions of DEPFET detector prototypes measured at beam tests Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 638 Issue 1 Pages 24-32
Keywords Silicon pixel detector; Detector resolution; Spatial resolution; DEPFET; Beam test
Abstract The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.
Address [Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Malina, L.; Scheirich, J.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic, Email: peter.kodys@mff.cuni.cz
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000290082600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 618
Permanent link to this record
 

 
Author Marinas, C.; Vos, M.
Title The Belle-II DEPFET pixel detector: A step forward in vertexing in the superKEKB flavour factory Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 650 Issue 1 Pages 59-63
Keywords SuperKEKB; Belle-II; DEPFET; Pixel detector; ASIC; Mechanics; Cooling; Resolution
Abstract An upgrade of the successful asymmetric e(+)e(-) collider in KEK (Tsukuba, Japan) is foreseen by the fall of 2013. This new Super Flavor Factory will deliver an increased instantaneous luminosity of up to L = 8 x 10(35) cm(-2) s(-1), 40 times larger than the current KEKB machine. To exploit these new conditions and provide high precision measurements of the decay vertex of the B meson systems, a new silicon vertex detector will be operated in Belle. This new detector will consist of two layers of DEPFET Active Pixel Sensors as close as possible to the interaction point. DEPFET is a field effect transistor, with an additional deep implant underneath the channel's gate, integrated on a completely depleted bulk. This technology offers detection and an in-pixel amplification stage, while keeping low the power consumption. Under these conditions, thin sensors with small pixel size and low intrinsic noise are possible. In this article, an overview of the full system will be described, including the sensor, the front-end electronics and both the mechanical and thermal proposed solutions as well as the expected performance.
Address [Marinas, C; Vos, M] CSIC UVEG, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: Carlos.Marinas.Pardo@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000295106500015 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 768
Permanent link to this record
 

 
Author Schreeck, H.; Paschen, B.; Wieduwilt, P.; Ahlburg, P.; Andricek, L.; Dingfelder, J.; Frey, A.; Lutticke, F.; Marinas, C.; Richter, R.; Schwenker, B.
Title Effects of gamma irradiation on DEPFET pixel sensors for the Belle II experiment Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 959 Issue Pages 163522 - 9pp
Keywords DEPFET; Radiation damage; Particle tracking detectors; Belle II
Abstract For the Belle II experiment at KEK (Tsukuba, Japan) the KEKB accelerator was upgraded to deliver a 40 times larger instantaneous luminosity than before, which requires an increased radiation hardness of the detector components. As the innermost part of the Belle II detector, the pixel detector (PXD), based on DEPFET (DEpleted P-channel Field Effect Transistor) technology, is most exposed to radiation from the accelerator. An irradiation campaign was performed to verify that the PXD can cope with the expected amount of radiation. We present the results of this measurement campaign in which an X-ray machine was used to irradiate a single PXD half-ladder to a total dose of 266 kGy. The half-ladder is from the same batch as the half-ladders used for Belle II. According to simulations, the total accumulated dose corresponds to 7-10 years of Belle II operation. While individual components have been irradiated before, this campaign is the first full system irradiation. We discuss the effects on the DEPFET sensors, as well as the performance of the front-end electronics. In addition, we present efficiency studies of the half-ladder from beam tests performed before and after the irradiation.
Address [Schreeck, Harrison; Wieduwilt, Philipp; Frey, Ariane; Schwenker, Benjamin] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: harrison.schreeck@phys.uni-goettingen.de
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000518368800016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4316
Permanent link to this record
 

 
Author Wieduwilt, P.; Paschen, B.; Schreeck, H.; Schwenker, B.; Soltau, J.; Ahlburg, P.; Dingfelder, J.; Frey, A.; Gomis, P.; Lutticke, F.; Marinas, C.
Title Performance of production modules of the Belle II pixel detector in a high-energy particle beam Type Journal Article
Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 991 Issue Pages 164978 - 15pp
Keywords DEPFET; DESY testbeam; Pixel detector; Belle II; Vertex detector
Abstract The Belle II experiment at the Super B factory SuperKEKB, an asymmetric e(+) e(-) collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the gamma (4S) resonance of m(gamma(4S)) = 10.58 GeV. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only 75 μm. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.
Address [Paschen, B.; Ahlburg, P.; Dingfelder, J.; Luetticke, F.] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany, Email: philipp.wieduwilt@phys.uni-goettingen.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000686054900010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4941
Permanent link to this record