|   | 
Details
   web
Records
Author Becchetti, M.; Bonciani, R.; Cieri, L.; Coro, F.; Ripani, F.
Title Two-loop form factors for diphoton production in quark annihilation channel with heavy quark mass dependence Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 12 Issue 12 Pages 105 - 28pp
Keywords Higher-Order Perturbative Calculations; Top Quark
Abstract We present the computation of the two-loop form factors for diphoton production in the quark annihilation channel. These quantities are relevant for the NNLO QCD corrections to diphoton production at LHC recently presented in [1]. The computation is performed retaining full dependence on the mass of the heavy quark in the loops. The master integrals are evaluated by means of differential equations which are solved exploiting the generalised power series technique.
Address [Becchetti, Matteo] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy, Email: matteo.becchetti@unito.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001130350300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5865
Permanent link to this record
 

 
Author Camarda, S.; Cieri, L.; Ferrera, G.
Title Drell-Yan lepton-pair production: qT resummation at N4LL accuracy Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal (up) Phys. Lett. B
Volume 845 Issue Pages 138125 - 12pp
Keywords
Abstract We consider Drell-Yan lepton pairs produced in hadronic collisions. We present high-accuracy QCD predictions for the transverse-momentum (qT) distribution and fiducial cross sections in the small qT region. We resum to all perturbative orders the logarithmically enhanced contributions up to the next-to-next-to-next-to-next-to-leading logarithmic (N4LL) accuracy and we include the hard-virtual coefficient at the next-to-next-to-next-to-leading order (N3LO) (i.e. O(& alpha;3S)) with an approximation of the N4LO coefficients. The massive axial-vector and vector contributions up to three loops have also been consistently included. The resummed partonic cross section is convoluted with approximate N3LO parton distribution functions. We show numerical results at LHC energies of resummed qT distributions for Z/& gamma; *, W & PLUSMN; production and decay, including the W & PLUSMN; and Z/& gamma; * ratio, estimating the corresponding uncertainties from missing higher orders corrections and from incomplete or missing perturbative information coefficients at N4LL and N4LO. Our resummed calculation has been encoded in the public numerical program DYTurbo.
Address [Camarda, Stefano] CERN, CH-1211 Geneva, Switzerland, Email: giancarlo.ferrera@mi.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001067194500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5687
Permanent link to this record
 

 
Author Becchetti, M.; Bonciani, R.; Cieri, L.; Coro, F.; Ripani, F.
Title Full top-quark mass dependence in diphoton production at NNLO in QCD Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal (up) Phys. Lett. B
Volume 848 Issue Pages 138362 - 7pp
Keywords Collider phenomenology; Diphoton; Top quark; NNLO
Abstract In this paper we consider the diphoton production in hadronic collisions at the next-to-next-to-leading order (NNLO) in perturbative QCD, taking into account for the first time the full top quark mass dependence up to two loops (full NNLO). We show selected numerical distributions, highlighting the kinematic regions where the massive corrections are more significant. We make use of the recently computed two-loop massive amplitudes for diphoton production in the quark annihilation channel. The remaining massive contributions at NNLO are also considered, and we comment on the weight of the different types of contributions to the full and complete result.
Address [Becchetti, Matteo] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy, Email: matteo.becchetti@unito.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001131862200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5873
Permanent link to this record
 

 
Author Martinez de Lejarza, J.J.; Cieri, L.; Rodrigo, G.
Title Quantum clustering and jet reconstruction at the LHC Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal (up) Phys. Rev. D
Volume 106 Issue 3 Pages 036021 - 16pp
Keywords
Abstract Clustering is one of the most frequent problems in many domains, in particular, in particle physics where jet reconstruction is central in experimental analyses. Jet clustering at the CERN's Large Hadron Collider (LHC) is computationally expensive and the difficulty of this task will increase with the upcoming High-Luminosity LHC (HL-LHC). In this paper, we study the case in which quantum computing algorithms might improve jet clustering by considering two novel quantum algorithms which may speed up the classical jet clustering algorithms. The first one is a quantum subroutine to compute a Minkowski-based distance between two data points, whereas the second one consists of a quantum circuit to track the maximum into a list of unsorted data. The latter algorithm could be of value beyond particle physics, for instance in statistics. When one or both of these algorithms are implemented into the classical versions of well-known clustering algorithms (K-means, affinity propagation, and k(T) -jet) we obtain efficiencies comparable to those of their classical counterparts. Even more, exponential speed-up could be achieved, in the first two algorithms, in data dimensionality and data length when the distance algorithm or the maximum searching algorithm are applied.
Address [Martinez de Lejarza, Jorge J.; Cieri, Leandro; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: Jorge.M.Lejarza@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000850823300008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5357
Permanent link to this record
 

 
Author Cieri, L.; Sborlini, G.F.R.
Title Exploring QED Effects to Diphoton Production at Hadron Colliders Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal (up) Symmetry-Basel
Volume 13 Issue 6 Pages 994 - 17pp
Keywords diphoton production; QCD corrections; NLO calculations; QED effects
Abstract In this article, we report phenomenological studies about the impact of O(alpha) corrections to diphoton production at hadron colliders. We explore the application of the Abelianized version of the qT-subtraction method to efficiently compute NLO QED contributions, taking advantage of the symmetries relating QCD and QED corrections. We analyze the experimental consequences due to the selection criteria and we find percent-level deviations for M-gamma gamma > 1TeV. An accurate description of the tail of the invariant mass distribution is very important for new physics searches which have the diphoton process as one of their main backgrounds. Moreover, we emphasize the importance of properly dealing with the observable photons by reproducing the experimental conditions applied to the event reconstruction.
Address [Cieri, Leandro] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy, Email: cieri@fi.infn.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000666940900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4898
Permanent link to this record