toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Angles-Alcazar, D.; Genel, S.; Marinacci, F.; Spergel, D.N.; Hernquist, L.; Vogelsberger, M.; Dave, R.; Narayanan, D. url  doi
openurl 
  Title Inferring Halo Masses with Graph Neural Networks Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal (down) Astrophys. J.  
  Volume 935 Issue 1 Pages 30 - 15pp  
  Keywords  
  Abstract Understanding the halo-galaxy connection is fundamental in order to improve our knowledge on the nature and properties of dark matter. In this work, we build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among galaxy properties and their phase space, we use Graph Neural Networks (GNNs), which are designed to work with irregular and sparse data. We train our models on galaxies from more than 2000 state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations project. Our model, which accounts for cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a similar to 0.2 dex accuracy. Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our method. The PyTorch Geometric implementation of the GNN is publicly available on GitHub (https://github.com/PabloVD/HaloGraphNet).  
  Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000838320900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5325  
Permanent link to this record
 

 
Author Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C. doi  openurl
  Title Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
  Year 2013 Publication Astroparticle Physics Abbreviated Journal (down) Astropart Phys.  
  Volume 42 Issue Pages 1-6  
  Keywords Neutron background; Underground physics; He-3 proportional counters  
  Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).  
  Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315371900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1351  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Calvo Diaz-Aldagalan, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Ruiz-Rivas, J.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles Type Journal Article
  Year 2013 Publication Astroparticle Physics Abbreviated Journal (down) Astropart Phys.  
  Volume 42 Issue Pages 7-14  
  Keywords Neutrino telescope; Fermi Bubbles; KM3NeT  
  Abstract A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the “Fermi bubbles”). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km(3) of instrumented volume. The effect of a possible lower cutoff is also considered.  
  Address [Craig, J.; Jamieson, A.; Priede, I. G.] Univ Aberdeen, Aberdeen AB9 1FX, Scotland, Email: coniglione@lns.inf  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315371900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1352  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva