toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xiao, C.W.; Nieves, J.; Oset, E. url  doi
openurl 
  Title Heavy quark spin symmetric molecular states from (D)over-bar(()*())Sigma(()(c)*()) and other coupled channels in the light of the recent LHCb pentaquarks Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 100 Issue 1 Pages 014021 - 6pp  
  Keywords  
  Abstract We consider the (D) over bar (()*())Sigma(()(c)*()) states, together with J/psi N and other coupled channels, and take an interaction consistent with heavy quark spin symmetry, with the dynamical input obtained from an extension of the local hidden gauge approach. By fitting only one parameter to the recent three pentaquark states reported by the LHCb Collaboration, we can reproduce the three of them in base to the mass and the width, providing for them the quantum numbers and approximate molecular structure as 1/2(-) (D) over bar Sigma(c), 1/2(-) (D) over bar*Sigma(c), and 3/2(-) (D) over bar*Sigma(c), and the isospin I = 1/2. We find another state around 4374 MeV, of the 3/2(-) (D) over bar Sigma(c)* structure, for which indications appear in the experimental spectrum. Two other near degenerate states of a 1/2(-) (D) over bar*Sigma(c)* and 3/2(-) (D) over bar*Sigma(c)* nature are also found around 4520 MeV, which although less clear, are not incompatible with the observed spectrum. In addition, a 5/2(-) (D) over bar*Sigma(c)* state at the same energy appears, which however does not couple to J/psi p in an S wave, and hence, it is not expected to show up in the LHCb experiment.  
  Address [Xiao, C. W.] Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000476694500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4086  
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title Further tests of lepton flavor universality from the charged lepton energy distribution in b -> c semileptonic decays: The case of Lambda(b) -> Lambda(c) l(v)over-bar(l) Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 100 Issue 11 Pages 113007 - 11pp  
  Keywords  
  Abstract In a general framework, valid for any H -> H' l(-)(v) over bar (l) semileptonic decay, we analyze the d(2)Gamma/(d omega d cos theta(l)) and d(2)Gamma/(d omega dE(l)) distributions, with omega being the product of the hadron four-velocities, theta(l) the angle made by the three-momenta of the charged lepton and the final hadron in the W- center of mass frame and E-l the charged lepton energy in the decaying hadron rest frame. Within the Standard Model (SM), d(2)Gamma/(d omega dE(l)) proportional to (c(0) (omega) c(1) (omega)E-l/M + c(2) (omega)E-l(2)/M-2), with M the initial hadron mass. We find that c(2) (omega) is independent of the lepton flavor and thus it is an ideal candidate to look for lepton flavor universality (LFU) violations. We also find a correlation between the a(2) (omega) structure function, which governs the (cos theta(l))(2) dependence of d(2)Gamma/(d omega d cos theta(l)), and c(2) (omega). Apart from trivial kinematical and mass factors, the ratio of a(2) (omega)/c(2) (omega) is a universal function that can be measured in any semileptonic decay, involving not only b -> c transitions. These two SM predictions can be used as new tests in the present search for signatures of LFU violations. We also generalize the formalism to account for some new physics (NP) terms, and show that neither c(2) nor a(2) are modified by left and right scalar NP terms, being however sensitive to left and right vector corrections. We also find that the a(2)/c(2) ratio is not modified by these latter NP contributions. Finally, and in order to illustrate our findings, we apply our general framework to the Lambda(b) -> Lambda(c)l (v) over bar (l) decay. We show that a measurement of c(2) (or a(2)) for tau decay would not only be a direct measurement of the possible existence of NP, but it would also allow to distinguish from NP fits to b -> c tau(v) over bar (tau) anomalies in the meson sector, which otherwise give the same total and differential d Gamma/d omega widths. We show that the same occurs for the other two terms, c(0) and c(1), that appear in d(2)Gamma/(d omega dE(l)), and for the cos theta(l) linear term of the angular distribution.  
  Address [Penalva, Neus; Nieves, Juan] Ctr Mixto CSIC UV, Inst Invest Paterna, Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000503400600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4230  
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R. url  doi
openurl 
  Title Nature of the lowest-lying odd parity charmed baryon Lambda(c)(2595) and Lambda(c)(2625) resonances Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 101 Issue 1 Pages 014018 - 17pp  
  Keywords  
  Abstract We study the structure of the Lambda(c) (2595) and Lambda(c) (2625) resonances in the framework of an effective field theory consistent with heavy quark spin and chiral symmetries, which incorporates the interplay between Sigma(()(c)*() )pi – ND(*()) baryon-meson degrees of freedom (d.o.f.) and bare P-wave c (u) over bard quark-model states. We show that these two resonances are not heavy quark spin symmetry partners. The J(P) = 3/2(-) Lambda(c) (2625) should be viewed mostly as a dressed three-quark state, whose origin is determined by a bare state, predicted to lie very close to the mass of the resonance. The J(P) = 1/2(-) Lambda(c) (2595) seems to have, however, a predominant molecular structure. This is because it is either the result of the chiral Sigma(c)pi interaction, whose threshold is located much closer than the mass of the bare three-quark state, or because the light d.o.f. in its inner structure are coupled to the unnatural 0(-) quantum numbers. We show that both situations can occur depending on the renormalization procedure used. We find some additional states, but the classification of the spectrum in terms of heavy quark spin symmetry is difficult, despite having used interactions that respect this symmetry. This is because the bare quark-model state and the Sigma(c)pi threshold are located extraordinarily close to the Lambda(c) (2625) and Lambda(c) (2595), respectively, and hence they play totally different roles in each sector.  
  Address [Nieves, J.; Pavao, R.] Ctr Mixto CSIC UV, Inst Invest Paterna, Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000509494900007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4272  
Permanent link to this record
 

 
Author Yao, D.L.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title New parametrization of the form factors in (B)over-bar -> Dl(nu)over-bar(l) decays Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 101 Issue 3 Pages 034014 - 7pp  
  Keywords  
  Abstract A new model-independent parametrization is proposed for the hadronic form factors in the semileptonic (B) over bar -> Dl (nu) over bar (l) decay. By a combined consideration of the recent experimental and lattice QCD data, we determine precisely the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar = 41.01(75) x 10(-3) and the ratio R-D = BR((B) over bar -> D tau(nu) over bar (tau))/BR((B) over bar -> Dl (nu) over bar (l)) = 0.301(5). The coefficients in this parametrization, related to phase shifts by sumrulelike dispersion relations and hence called phase moments, encode important scattering information of the (B) over bar (D) over bar interactions which are poorly known so far. Thus, we give strong hints about the existence of at least one bound and one virtual (B) over bar (D) over bar S-wave 0(+) states, subject to uncertainties produced by potentially sizable inelastic effects. This formalism is also applicable for any other semileptonic processes induced by the weak b -> c transition.  
  Address [Yao, De-Liang] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513217400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4277  
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title Hadron and lepton tensors in semileptonic decays including new physics Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 101 Issue 11 Pages 113004 - 24pp  
  Keywords  
  Abstract We extend our general framework for semileptonic decay, originally introduced in N. Penalva et al. [Phys. Rev. D 100, 113007 (2019)], with the addition of new physics (NP) tensor terms. In this way, all the NP effective Hamiltonians that are considered in lepton flavor universality violation (LFUV) studies have now been included. Those are left and right vector and scalar NP Hamiltonians and the NP tensor one. Besides, we now also give general expressions that allow for complex Wilson coefficients. The scheme developed is totally general and it can be applied to any charged current semileptonic decay, involving any quark flavors or initial and final hadron states. We show that all the hadronic input, including NP effects, can be parametrized in terms of 16 Lorentz scalar structure functions, constructed out of the NP complex Wilson coefficients and the genuine hadronic responses, with the latter determined by the matrix elements of the involved hadron operators. In the second part of this work, we use this formalism to obtain the complete NP effects in the Ab Acr(/ semileptonic decay, where LFUV, if finally confirmed, is also expected to be seen. We- stress the relevance of the center of mass (CM) d2F/ (dwd cos 0i) and laboratory (LAB) d2F/(dwdE,) differential decay widths, with (o the product of the hadron four-velocities, Oe the angle made by the three -momenta of the charged lepton and the final hadron in the 11/- CM frame and the charged lepton energy in the decaying hadron rest frame. While models with very different strengths in the NP terms give the same differential d17 do) and total decay widths for this decay, they predict very different numerical results for some of the cos (.),, and E coefficient -functions that determine the above two distributions. Thus, the combined analysis of the CM d2F1(dcodcos0,,) and LAB d21'/(doidE,.) differential decay widths will help clarifying what kind of NP is a better candidate in order to explain LFUV.  
  Address [Penalva, Neus; Hernandez, Eliecer] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000543941400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4448  
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title (B)over-bar(c) ->eta(c),(B)over-bar(c) -> J/psi and (B)over-bar -> D-(*()) semileptonic decays including new physics Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 102 Issue 9 Pages 096016 - 27pp  
  Keywords  
  Abstract We apply the general formalism derived by Penalva et al. [Phys. Rev. D 101, 113004 (2020)] to the semileptonic decay of pseudoscalar mesons containing a b quark. While present (B) over bar -> D-(*()) data give the strongest evidence in favor of lepton flavor universality violation, the observables that are normally considered are not able to distinguish between different new physics (NP) scenarios. In the above reference we discussed the relevant role that the various contributions to the double differential decay widths d(2)Gamma (d omega d cos theta(l)) and d(2)Gamma (d omega dE(l)) could play to this end. Here omega is the product of the two hadron fourvelocities, theta(l) is the angle made by the final lepton and final hadron three-momenta in the center of mass of the final two-lepton system, and E-l is the final charged lepton energy in the laboratory system. The formalism was applied by Penalva et al. to the analysis of the Lambda(b) -> Lambda(c) semileptonic decay, showing the new observables were able to tell apart different NP scenarios. Here we analyze the (B) over barc -> eta(c)tau(nu) over bar (tau), (B) over barc -> J/psi tau(nu) over bar (tau), (B) over bar -> D tau(nu) over bar (tau) and (B) over bar -> D*tau(nu) over bar (tau) , semileptonic decays. We find that, as a general rule, the (B) over barc -> J/psi observables, even including (tau) polarization, are less optimal for distinguishing between NP scenarios than those obtained from (B) over barc -> eta(c) decays, or those presented by Penalva et al. for the related Lambda(b) -> Lambda(c) semileptonic decay. Finally, we show that (B) over bar -> D and (B) over barc -> eta(c) , and (B) over bar -> D* and (B) over barc -> J/psi decay observables exhibit similar behaviors.  
  Address [Penalva, Neus; Hernandez, Eliecer] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000588583900012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4608  
Permanent link to this record
 

 
Author Yang, Z.; Cao, X.; Guo, F.K.; Nieves, J.; Pavon Valderrama, M. url  doi
openurl 
  Title Strange molecular partners of the Z(c)(3900) and Z(c)(4020) Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 103 Issue 7 Pages 074029 - 8pp  
  Keywords  
  Abstract Quantum chromodynamics presents a series of exact and approximate symmetries which can be exploited to predict new hadrons from previously known ones. The Z(c)(3900) and Z(c)(4020), which have been theorized to be isovector D*(D) over bar and D*(D) over bar* molecules [I-G(J(PC)) = 1(-)(1)(+-))], are no exception. Here we argue that from SU(3)-flavor symmetry, we should expect the existence of strange partners of the Z(c)'s with hadronic molecular configurations D*(D) over bar (s) – D (D) over bar*(s) and D*(D) over bar*(s) (or, equivalently, quark content c (c) over bars (q) over bar, with q = u, d). The quantum numbers of these Z(cs) and Z(cs)* structures would be I(J(P)) = 1/2 (1(+)). The predicted masses of these partners depend on the details of the theoretical scheme used, but they should be around the D*(D) over bar (s) – D (D) over bar*(s) and D*(D) over bar*(s) thresholds, respectively. Moreover, any of these states could be either a virtual pole or a resonance. We show that, together with a possible triangle singularity contribution, such a picture nicely agrees with the very recent BESIII data of the e(+)e(-) -> K+((Ds-D*0) + D*D--(s)0).  
  Address [Yang, Zhi] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China, Email: zhiyang@uestc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000648581900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4832  
Permanent link to this record
 

 
Author Du, M.L.; Baru, V.; Dong, X.K.; Filin, A.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Nieves, J.; Wang, Q. url  doi
openurl 
  Title Coupled-channel approach to T-cc(+) including three-body effects Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 105 Issue 1 Pages 014024 - 19pp  
  Keywords  
  Abstract A coupled-channel approach is applied to the charged tetraquark state T-cc(+). recently discovered by the LHCb Collaboration. The parameters of the interaction are fixed by a fit to the observed line shape in the three-body (DD0)-D-0 pi(+) channel. Special attention is paid to the three-body dynamics in the T-cc(+) due to the finite life time of the D*. An approach to the T-cc(+) is argued to be self-consistent only if both manifestations of the three-body dynamics, the pion exchange between the D and D* mesons and the finite D* width, are taken into account simultaneously to ensure that three-body unitarity is preserved. This is especially important to precisely extract the pole position in the complex energy plane whose imaginary part is very sensitive to the details of the coupled-channel scheme employed. The (DD0)-D-0 and (DD+)-D-0 invariant mass distributions, predicted based on this analysis, are in good agreement with the LHCb data. The low-energy expansion of the D* D scattering amplitude is performed and the low-energy constants (the scattering length and effective range) are extracted. The compositeness parameter of the T-cc(+) is found to be close to unity, which implies that the T-cc(+) is a hadronic molecule generated by the interactions in the D*D-+(0) and D*D-0(+) channels. Employing heavy-quark spin symmetry, an isoscalar D* D* molecular partner of the T-cc(+) with J(P) = 1(+ )is predicted under the assumption that the DD* -D* D* coupled-channel effects can be neglected.  
  Address [Du, Meng-Lin; Nieves, Juan] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: du.menglin@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000747425300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5096  
Permanent link to this record
 

 
Author Du, M.L.; Albaladejo, M.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Combined analysis of the Z(c)(3900) and the Z(cs)(3985) exotic states Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 105 Issue 7 Pages 074018 - 20pp  
  Keywords  
  Abstract We have performed a combined analysis of the BESIII data for both the Z(c)(3900) and Z(cs)(3985) structures, assuming that the latter is an SU(3) flavor partner of the former one. We have improved on the previous analysis of Albaladejo et al. [Phys. Lett. B 755, 337 (2016)] by computing the amplitude for the D-1(D) over barD* triangle diagram considering both D- and S-wave D1D*x couplings. We have also investigated effects from SU(3) light-flavor violations, which are found to be moderate and of the order of 20%. The successful reproduction of the BESIII spectra, in both the hidden-charm and hidden-charm strange sectors, strongly supports that the Z(cs)(3985) and Z(c)(3900) are SU(3) flavor partners placed in the same octet multiplet. The best results are obtained when an energy-dependent term in the diagonal D(*) (D) over bar ((s))((*)) interaction is included, leading to resonances (poles above the thresholds) to describe these exotic states. We have also made predictions for the isovector Z*c and isodoublet Z*(cs), D*(D) over bar*, and D*??D*s molecules, with J(PC) = 1(+-) and J(P) = 1(+), respectively. These states would be heavy-quark spin symmetry (HQSS) partners of the Z(c) and Z(cs). Besides the determination of the masses and widths of the Z(c)(3900) and Z(cs)(3985), we also predict those of the Z*(c) and Z*(cs) resonances.  
  Address [Du, Meng-Lin; Albaladejo, Miguel; Nieves, Juan] UV, CSIC, Ctr Mixto, Inst Invest Paterna,Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain, Email: du.menglin@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000809663000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5259  
Permanent link to this record
 

 
Author Du, M.L.; Penalva, N.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title New physics effects on Lambda(b) -> Lambda(c)*tau(nu)over-bar(tau) decays Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 106 Issue 5 Pages 055039 - 21pp  
  Keywords  
  Abstract We benefit from a recent lattice determination of the full set of vector, axial and tensor form factors for the Lambda(b) -> Lambda(c)* (2595)tau(nu) over bar (tau) and Lambda(c) (2625)tau(nu) over bar (tau) semileptonic decays to study the possible role of these two reactions in lepton flavor universality violation studies. Using an effective theory approach, we analyze different observables that can be accessed through the visible kinematics of the charged particles produced in the tau decay, for which we consider the pi(-)nu(tau), rho(-) nu(tau) and mu(-)(nu) over bar (mu)nu(tau) channels. We compare the results obtained in the Standard Model and other schemes containing new physics (NP) interactions, with either left-handed or right-handed neutrino operators. We find a discriminating power between models similar to the one of the Lambda(b) -> Lambda(c) decay, although somewhat hindered in this case by the larger errors of the Lambda(b) -> Lambda(c)* lattice form factors. Notwithstanding this, the analysis of these reactions is already able to discriminate between some of the NP scenarios and its potentiality will certainly improve when more precise form factors are available.  
  Address [Du, Meng-Lin; Penalva, Neus; Nieves, Juan] Inst Fis Corpuscular Ctr Mixto CSIC UV, Inst Invest Paterna, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000870152800009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5401  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva