|   | 
Details
   web
Records
Author Bruschini, R.; Gonzalez, P.
Title Strong decays of the lowest bottomonium hybrid within an extended Born-Oppenheimer framework Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C
Volume 81 Issue 1 Pages 74 - 9pp
Keywords
Abstract We analyze the decays of the theoretically predicted lowest bottomonium hybrid H(1P) to open bottom two-meson states. We do it by embedding a quark pair creation model into the Born-Oppenheimer framework which allows for a unified, QCD-motivated description of bottomonium hybrids as well as bottomonium. A new 1P1 decay model for H(1P) comes out. The same analysis applied to bottomonium leads naturally to the well-known 3 P0 decay model. We show that H(1P) and the theoretically predicted bottomonium state Upsilon (5S), whose calculated masses are close to each other, have very different widths for such decays. A comparison with data from Upsilon (10860), an experimental resonance whose mass is similar to that of Upsilon (5S) and H(1P), is carried out. Neither a Upsilon (5S) nor a H(1P) assignment can explain the measured decay widths. However, a Upsilon (5S)-H(1P) mixing may give account of them supporting previous analyses of dipion decays of Upsilon (10860) and suggesting a possible experimental evidence of H(1P).
Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular, Unidad Teor, Valencia 46980, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000612840500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4695
Permanent link to this record
 

 
Author Coloma, P.; Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Pavlovic, Z.
Title GeV-scale neutrinos: interactions with mesons and DUNE sensitivity Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C
Volume 81 Issue 1 Pages 78 - 24pp
Keywords
Abstract The simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced in meson decays. Similarly, provided they are sufficiently heavy, their decay channels may involve mesons in the final state. Although the couplings between mesons and heavy neutrinos have been computed previously, significant discrepancies can be found in the literature. The aim of this paper is to clarify such discrepancies and provide consistent expressions for all relevant effective operators involving mesons with masses up to 2 GeV. Moreover, the effective Lagrangians obtained for both the Dirac and Majorana scenarios are made publicly available as FeynRules models so that fully differential event distributions can be easily simulated. As an application of our setup, we numerically compute the expected sensitivity of the DUNE near detector to these heavy neutral leptons.
Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000613016200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4704
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J.
Title Gluon dynamics from an ordinary differential equation Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C
Volume 81 Issue 1 Pages 54 - 20pp
Keywords
Abstract We present a novel method for computing the nonperturbative kinetic term of the gluon propagator from an ordinary differential equation, whose derivation hinges on the central hypothesis that the regular part of the three-gluon vertex and the aforementioned kinetic term are related by a partial Slavnov-Taylor identity. The main ingredients entering in the solution are projection of the three-gluon vertex and a particular derivative of the ghost-gluon kernel, whose approximate form is derived from a Schwinger-Dyson equation. Crucially, the requirement of a pole-free answer determines the initial condition, whose value is calculated from an integral containing the same ingredients as the solution itself. This feature fixes uniquely, at least in principle, the form of the kinetic term, once the ingredients have been accurately evaluated. In practice, however, due to substantial uncertainties in the computation of the necessary inputs, certain crucial components need be adjusted by hand, in order to obtain self-consistent results. Furthermore, if the gluon propagator has been independently accessed from the lattice, the solution for the kinetic term facilitates the extraction of the momentum-dependent effective gluon mass. The practical implementation of this method is carried out in detail, and the required approximations and theoretical assumptions are duly highlighted.
Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000611993400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4730
Permanent link to this record
 

 
Author Fuentes-Martin, J.; Ruiz-Femenia, P.; Vicente, A.; Virto, J.
Title DsixTools 2.0: the effective field theory toolkit Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C
Volume 81 Issue 2 Pages 167 - 30pp
Keywords
Abstract DsixTools is a Mathematica package for the handling of the standard model effective field theory (SMEFT) and the low-energy effective field theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. DsixTools contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). DsixTools also performs weak basis transformations, and implements the full one-loop Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.
Address [Fuentes-Martin, Javier] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany, Email: jvirto@ub.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000620648200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4735
Permanent link to this record
 

 
Author Barenboim, G.; Hill, C.T.
Title Sterile neutrinos, black hole vacuum and holographic principle Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C
Volume 81 Issue 2 Pages 150 - 9pp
Keywords
Abstract We construct an effective field theory (EFT) model that describes matter field interactions with Schwarzschild mini-black-holes (SBH's), treated as a scalar field, B0(x). Fermion interactions with SBH's require a complex spurion field, theta ij, which we interpret as the EFT description of “holographic information,” which is correlated with the SBH as a composite system. We consider Hawking's virtual black hole vacuum (VBH) as a Higgs phase, B0=V. Integrating sterile neutrino loops, the information field theta ij is promoted to a dynamical field, necessarily developing a tachyonic instability and acquiring a VEV of order the Planck scale. For N sterile neutrinos this breaks the vacuum to SU(N)xU(1)/SO(N) with N degenerate Majorana masses, and <mml:mfrac>12</mml:mfrac>N(N+1) Nambu-Goldstone neutrino-Majorons. The model suggests many scalars fields, corresponding to all fermion bilinears, may exist bound nonperturbatively by gravity.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000620366700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4736
Permanent link to this record