toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Estienne, M.; Fallot, M.; Cormon, S.; Algora, A.; Bui, V.M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Jordan, D.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Tain, J.L.; Yermia, F.; Zakari-Issoufou, A.A. doi  openurl
  Title Contribution of Recently Measured Nuclear Data to Reactor Antineutrino Energy Spectra Predictions Type Journal Article
  Year 2014 Publication Nuclear Data Sheets Abbreviated Journal (down) Nucl. Data Sheets  
  Volume 120 Issue Pages 149-152  
  Keywords  
  Abstract The aim of this work is to study the impact of the inclusion of the recently measured beta decay properties of the Tc-102,Tc-104,Tc-105,Tc-106,Tc-107, Mo-105, and Nb-101 nuclei in the calculation of the antineutrino (anti-nu) energy spectra arising after the fissions of the four main fissile isotopes U-235,U-238, and (PU)-P-239,241 in PWRs. These beta feeding probabilities, measured using the Total Absorption Technique (TAS) at the JYFL facility of Jyvaskyla, have been found to play a major role in the gamma component of the decay heat for Pu-239 in the 4-3000 s range. Following the fission product summation method, the calculation was performed using the MCNP Utility Reactor Evolution code (MURE) coupled to the experimental spectra built from beta decay properties of the fission products taken from evaluated databases. These latest TAS data are found to have a significant effect on the Pu isotope energy spectra and on the spectrum of U-238 showing the importance of their measurement for a better assessment of the reactor anti-nu energy spectrum, as well as importance for fundamental neutrino physics experiments and neutrino applied physics.  
  Address [Estienne, M.; Fallot, M.; Cormon, S.; Bui, V. M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Yermia, F.; Zakari-Issoufou, A. -A.] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS IN2P3, F-44307 Nantes, France, Email: magali.estienne@subatech.in2p3.fr  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0090-3752 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339860100041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1874  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo Diaz-Aldagalan, D.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Olcina, I.; Real, D.; Sanchez Garcia, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Letter of intent for KM3NeT 2.0 Type Journal Article
  Year 2016 Publication Journal of Physics G Abbreviated Journal (down) J. Phys. G  
  Volume 43 Issue 8 Pages 084001 - 130pp  
  Keywords neutrino astronomy; neutrino physics; deep sea neutrino telescope; neutrino mass hierarchy  
  Abstract The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.  
  Address [Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C. D.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gest Integrada Zonas Costeras, C Paranimf 1, E-46730 Gandia, Spain, Email: brunner@cppm.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381686700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2773  
Permanent link to this record
 

 
Author Algora, A. et al; Jordan, D.; Tain, J.L.; Rubio, B.; Agramunt, J.; Perez-Cerdan, A.B.; Molina, F.; Caballero, L.; Nacher, E. doi  openurl
  Title Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal (down) J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1479-1482  
  Keywords Decay heat; Total absorption; Trap-assisted spectroscopy  
  Abstract The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaskyla, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.  
  Address [Algora, A; Jordan, D; Tain, JL; Rubio, B; Agramunt, J; Caballero, L; Nacher, E; Perez-Cerdan, AB; Molina, F] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: algora@ific.uv.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 729  
Permanent link to this record
 

 
Author Tain, J.L. et al; Algora, A.; Estevez, E.; Rubio, B.; Valencia, E.; Jordan, D. doi  openurl
  Title Beta Decay Studies of Neutron Rich Nuclei Using Total Absorption Gamma-ray Spectroscopy and Delayed Neutron Measurements Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal (down) J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1499-1502  
  Keywords Beta decay; Delayed neutron emission; Total absorption gamma-ray spectroscopy; Neutron detectors; Nuclear technology; Nuclear astrophysics  
  Abstract A complete characterisation of the beta-decay of neutron-rich nuclei can be obtained from the measurement of beta-delayed gamma rays and, whenever the process is energetically possible, beta-delayed neutrons. The accurate determination of the beta-intensity distribution and the beta-delayed neutron emission probability is of great relevance in the fields of reactor technology and nuclear astrophysics. A programme for combined measurements using the total absorption gamma-ray spectroscopy technique and both neutron counters and neutron time-of-flight spectrometers is presented.  
  Address [Tain, JL; Algora, A; Estevez, E; Rubio, B; Valencia, E; Jordan, D] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 730  
Permanent link to this record
 

 
Author Yoshida, T.; Hagura, N.; Umezu, R.; Algora, A.; Tain, J.L.; Jordan, D.; Tachibana, T. doi  openurl
  Title Impact of TAGS Measurement on FP Decay Data and Decay Heat Calculations Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal (down) J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1543-1546  
  Keywords Fission product; Decay data; JENDL; Beta decay; TAGS; Gross theory; Pandemonium  
  Abstract Nuclear level schemes are usually constructed from the high-resolution data of the gamma-ray transitions which immediately follow the beta-decay of their parents. It is recognized that this procedure may lead to the “pandemonium problem”. If we use the decay data suffering from the pandemonium problem for the decay heat calculations the beta-ray component will be overestimated and the gamma-ray component underestimated. The beta-feeding data obtained by the total absorption gamma-ray spectroscopy (TAGS) is proved to be free from this problem. In the case of the Japanese data base for the FP decay heat calculation, the theoretical values based on the gross theory of beta-decay are widely introduced to circumvent the pandemonium problem. The gross theory, however, is not good at describing any beta-transition exclusively concentrating to a single level in the daughter nucleus. The TAGS method is also proved to be able to save this situation. Further, we have to change our comprehension over the currently published decay schemes.  
  Address [Yoshida, T; Hagura, N; Umezu, R] Tokyo City Univ, Fac Engn, Tokyo 1585778, Japan, Email: tyoshida@tcu.ac.jp  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 732  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva