Piriz, G. H., Gonzalez-Sprinberg, G. A., Ballester, F., & Vijande, J. (2024). Dosimetry of Large Field Valencia applicators for Cobalt-60-based brachytherapy. Med. Phys., 51, 5094–5098.
Abstract: BackgroundNon-melanoma skin cancer is one of the most common types of cancer and one of the main approaches is brachytherapy. For small lesions, the treatment of this cancer with brachytherapy can be done with two commercial applicators, one of these is the Large Field Valencia Applicators (LFVA).PurposeThe aim of this study is to test the capabilities of the LFVA to use clinically 60Co sources instead of the 192Ir ones. This study was designed for the same dwell positions and weights for both sources.MethodsThe Penelope Monte Carlo code was used to evaluate dose distribution in a water phantom when a 60Co source is considered. The LFVA design and the optimized dwell weights reported for the case of 192Ir are maintained with the only exception of the dwell weight of the central position, that was increased. 2D dose distributions, field flatness, symmetry and the leakage dose distribution around the applicator were calculated.ResultsWhen comparing the dose distributions of both sources, field flatness and symmetry remain unchanged. The only evident difference is an increase of the penumbra regions for all depths when using the 60Co source. Regarding leakage, the maximum dose within the air volume surrounding the applicator is in the order of 20% of the prescription dose for the 60Co source, but it decreases to less than 5% at about 1 cm distance.ConclusionsFlatness and symmetry remains unaltered as compared with 192Ir sources, while an increase in leakage has been observed. This proves the feasibility of using the LFVA in a larger range of clinical applications.
|
Mansour, I. R., Valdes-Cortez, C., Ayala Alvarez, D. S., Berumen, F., Côte, J. S., Ndoutoume-Paquet, G., et al. (2025). Reference datasets for commissioning of model-based dose calculation algorithms for electronic brachytherapy. Med. Phys., , 11pp.
Abstract: PurposeThis work provides the first two clinical test cases for commissioning electronic brachytherapy (eBT) model-based dose calculation algorithms (MBDCAs) for skin irradiation using surface applicators.Acquisition and Validation MethodsThe test cases utilize the INTRABEAM 30 mm surface applicator. Test Case I: water phantom is used to evaluate the algorithm's performance in a uniform medium consisting of a voxelized water cube surrounded by air. Test Case II: Surface eBT represents a heterogeneous medium with four distinct layers: skin tissue, adipose tissue, cortical bone, and soft tissue. Treatment plans for both cases were created and exported into the Radiance treatment planning system (TPS). Dose-to-medium calculations were then performed using this Monte Carlo (MC)-based TPS and compared with MC simulations conducted independently by three different groups using two codes: EGSnrc and PENELOPE. The results agreed within expected Type A and B statistical uncertainties.Data Format and Usage NotesThe dataset is available online at https://doi.org/10.52519/00005. A proprietary file designed for use within Radiance containing CT images and the treatment plan for both test cases, the LINAC modeling, and the CT calibration are included, as well as reference MC and TPS dose data in RTdose format and all files required to run the MC simulations.Potential ApplicationsThis dataset serves as a valuable resource for commissioning eBT MBDCAs and lays the groundwork for developing clinical test cases for other eBT systems. It is also a helpful educational tool for exploring various eBT devices and their advantages and drawbacks. Furthermore, brachytherapy researchers seeking a benchmark for dosimetric calculations in the low-energy domain will find this dataset indispensable.
|
Romero-Barrientos, J., Marquez Damian, J. I., Molina, F., Zambra, M., Aguilera, P., Lopez-Usquiano, F., et al. (2022). Calculation of kinetic parameters beta eff and L with modified open source Monte Carlo code OpenMC(TD). Nucl. Eng. Technol., 54(3), 811–816.
Abstract: This work presents the methodology used to expand the capabilities of the Monte Carlo code OpenMC for the calculation of reactor kinetic parameters: effective delayed neutron fraction beff and neutron generation time L. The modified code, OpenMC(Time-Dependent) or OpenMC(TD), was then used to calculate the effective delayed neutron fraction by using the prompt method, while the neutron generation time was estimated using the pulsed method, fitting L to the decay of the neutron population. OpenMC(TD) is intended to serve as an alternative for the estimation of kinetic parameters when licensed codes are not available. The results obtained are compared to experimental data and MCNP calculated values for 18 benchmark configurations.
|
ATLAS Collaboration(Adragna, P. et al), Castelo, J., Castillo Gimenez, V., Cuenca, C., Ferrer, A., Fullana, E., et al. (2010). Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter. Nucl. Instrum. Methods Phys. Res. A, 615(2), 158–181.
Abstract: The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.
|
AGATA Collaboration, Farnea, E., Recchia, F., Bazzacco, D., Kroll, T., Podolyak, Z., et al. (2010). Conceptual design and Monte Carlo simulations of the AGATA array. Nucl. Instrum. Methods Phys. Res. A, 621(1-3), 331–343.
Abstract: The aim of the Advanced GAmma Tracking Array (AGATA) project is the construction of an array based on the novel concepts of pulse shape analysis and gamma-ray tracking with highly segmented Ge semiconductor detectors. The conceptual design of AGATA and its performance evaluation under different experimental conditions has required the development of a suitable Monte Carlo code. In this article, the description of the code as well as simulation results relevant for AGATA, are presented.
|