Alvarado, F., Alvarez-Ruso, L., Hernandez, E., Nieves, J., & Penalva, N. (2024). The Λc → Λ ℓ+ ν ℓ weak decay including new physics. J. High Energy Phys., 10(10), 137–24pp.
Abstract: We investigate the Lambda(c) -> Lambda & ell;(+)nu(& ell;) decay with a focus on potential new physics (NP) effects in the & ell; = μchannel. We employ an effective Hamiltonian within the framework of the Standard Model Effective Field Theory (SMEFT) to consider generalized dimension-6 semileptonic c -> s operators of scalar, pseudoscalar, vector, axial-vector and tensor types. We rely on Lattice QCD (LQCD) for the hadronic transition form factors, using heavy quark spin symmetry (HQSS) to determine those that have not yet been obtained on the lattice. Uncertainties due to the truncation of the NP Hamiltonian and different implementations of HQSS are taken into account. As a result, we unravel the NP discovery potential of the Lambda(c) -> Lambda semileptonic decay in different observables. Our findings indicate high sensitivity to NP in lepton flavour universality ratios, probing multi-TeV scales in some cases. On the theoretical side, we identify LQCD uncertainties in axial and vector form factors as critical for improving NP sensitivity, alongside better SMEFT uncertainty estimations.
|
Albertus, C., Hernandez, E., & Nieves, J. (2014). Exclusive c -> s, d Semileptonic Decays of Spin-1/2 and Spin-3/2 cb Baryons. Few-Body Syst., 55(8-10), 767–771.
Abstract: We present results for exclusive semileptonic decay widths of ground state spin-1/2 and spin-3/2 cb baryons corresponding to a c -> s, d transition at the quark level. The relevance of hyperfine mixing in spin-1/2 cb baryons is shown. Our form factors are compatible with heavy quark spin symmetry constraints obtained in the infinite heavy quark mass limit.
|
Kaskulov, M., Hernandez, E., & Oset, E. (2010). On the background in the gamma p -> omega(pi(0)gamma)p reaction and mixed event simulation. Eur. Phys. J. A, 46(2), 223–230.
Abstract: In this paper we evaluate sources of background of the gamma p -> omega p reaction, with the omega detected through its pi(0)gamma decay channel, to compare with the experiment carried out at ELSA. We find background from gamma p -> pi(0)pi(0)p followed by decay of a pi(0) into two gamma, recombining one pi(0) and one gamma, and from the gamma p -> pi(0)eta p reaction with subsequent decay of the eta into two photons. This background accounts for the data at pi(0)gamma invariant masses beyond 700 MeV, but strength is missing at lower invariant masses which was attributed to photon misidentification events, which we simulate to get a good reproduction of the experimental background. Once this is done, we perform an event mixing simulation to reproduce the calculated background and we find that the method provides a good description of the background. A closer look reveals this is accidental. We show that the mixed event generated background in the region of the omega mass and beyond is completely tied to the events at low pi(0)gamma invariant masses where the d sigma/dM(pi 0 gamma) distribution is much larger. This has as a consequence that the mixed event method produces the same background at high invariant masses independently of the actual background in that region, as a consequence of which, the method is unsuited to give the background at energies around the peak of the omega and beyond.
|