|   | 
Details
   web
Records
Author Vilella, E.; Alonso, O.; Trenado, J.; Vila, A.; Casanova, R.; Vos, M.; Garrido, L.; Dieguez, A.
Title A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 694 Issue Pages 199-204
Keywords The Geiger-mode avalanche photodiode (GAPD); CMOS; EUDET/AIDA telescope; Schottky detector; Test beam; Trigger logic unit (TLU)
Abstract It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.
Address [Vilella, E.; Alonso, O.; Vila, A.; Casanova, R.; Dieguez, A.] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain, Email: evilella@el.ub.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311020500029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1256
Permanent link to this record
 

 
Author BABAR Collaboration (Aubert, B. et al); Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.
Title The BABAR detector: Upgrades, operation and performance Type Journal Article
Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 729 Issue Pages 615-701
Keywords General-purpose detector for colliding beams; Operational experience; High-luminosity storage ring operation; Ream monitoring
Abstract The BABAR detector operated successfully at the PEP-Il asymmetric e(+) e(-) collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.
Address [Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Sanchez, P. del Amo; Gaillard, J. -M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Patrignani, C.] Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieuxde Phys Particules LAPP, F-74941 Annecy Le Vieux, France, Email: narnaud@lal.in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000325753500086 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1621
Permanent link to this record
 

 
Author Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; Garcia, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A.; Sadrozinski, H.F.W.
Title Low-resistance strip sensors for beam-loss event protection Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 765 Issue Pages 252-257
Keywords Silicon radiation detectors; Strip sensors; Punch through protection; Beam loss; HL-LHC; ATLAS Upgrade
Abstract AC coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punchthrough structure leading to large voltages. We present here our developments to fabricate lowresistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.
Address [Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.] CSIC, Ctr Nacl Microelect IMB CNM, Barcelona 08193, Spain, Email: Miguel.Ullan@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344621000048 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2003
Permanent link to this record
 

 
Author Tain, J.L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M.D.; Montaner-Piza, A.; Rubio, B.; Valencia, E.; Cano-Ott, D.; Gelletly, W.; Martinez, T.; Mendoza, E.; Podolyak, Z.; Regan, P.; Simpson, J.; Smith, A.J.; Strachan, J.
Title A decay total absorption spectrometer for DESPEC at FAIR Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 803 Issue Pages 36-46
Keywords Total absorption gamma-ray spectrometer; Scintillation detectors; Beta decay; High-energy beam fragmentation facilities
Abstract This paper presents the design of a total absorption gamma-ray spectrometer for the determination of beta-decay intensity distributions of exotic nuclear species at the focal plane of the FAIR-NUSTAR Super Fragment Separator. The spectrometer is a key instrument in the DESPEC experiment and the proposed implementation follows extensive design studies and prototype tests. Two options were contemplated, based on Nal(TI) and LaBr3:Ce inorganic scintillation crystals respectively. Monte Carlo simulations and technical considerations determined the optimal configurations consisting of sixteen 15 x 15 x 25 cm(3) crystals for the Nal(Tl) option and one hundred and twenty-eight 5.5 x 5.5 x 11 cm(3) crystals for the LaBr3:Ce option. Minimization of dead material was crucial for maximizing the spectrometer full-energy peak efficiency. Module prototypes were build to verify constructional details and characterize their performance. The measured energy and timing resolution was found to agree rather well with estimates based on simulations of scintillation light transport and collection. The neutron sensitivity of the spectrometer, important when measuring beta-delayed neutron emitters, was investigated by means of Monte Carlo simulations.
Address [Tain, J. L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M. D.; Montaner-Piza, A.; Rubio, B.; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000363464600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2431
Permanent link to this record
 

 
Author Faus-Golfe, A.; Navarro, J.; Fuster Martinez, N.; Resta Lopez, J.; Giner Navarro, J.
Title Emittance reconstruction from measured beam sizes in ATF2 and perspectives for ILC Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 819 Issue Pages 122-138
Keywords Beam size; Emittance; Linear Colliders
Abstract The projected emittance (2D) and the intrinsic emittance (4D) reconstruction method by using the beam size measurements at different locations is analyzed in order to study analytically the conditions of solvability of the systems of equations involved in this process. Some conditions are deduced and discussed, and general guidelines about the locations of the measurement stations have been obtained to avoid unphysical results. The special case of the multi-Optical Transition Radiation system (m-OTR), made of four measurement stations, in the Extraction Line (EXT) of Accelerator Test Facility 2 (ATF2) has been simulated in much detail and compared with measurements. Finally a feasibility study of a multi station system for fast transverse beam size measurement, emittance reconstruction and coupling correction in the Ring to Main Linac (RTML) of International Linear Collider (ILC) Diagnostic sections of the RTML has been discussed in detail.
Address [Faus-Golfe, A.; Navarro, J.; Fuster Martinez, N.; Giner Navarro, J.] Inst Fis Corpuscular CSIC UV, Madrid, Spain
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000372318800017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2581
Permanent link to this record