|   | 
Details
   web
Records
Author n_TOF Collaboration (Tagliente, G. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Zr-92(n, gamma) and (n,tot) measurements at the GELINA and n_TOF facilities Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C
Volume 105 Issue 2 Pages 025805 - 14pp
Keywords
Abstract Background: Stellar nucleosynthesis of elements heavier than iron is driven by neutron capture processes. Zr-92 is positioned at a strategic point along the slow nucleosynthesis path, given its proximity to the neutron magic number N = 50 and its position at the matching region between the weak and main slow processes. Purpose: In parallel with recent improved astronomical data, the extraction of accurate Maxwellian averaged cross sections (MACSs) derived from a more complete and accurate set of resonance parameters should allow for a better understanding of the stellar conditions at which nucleosynthesis takes place. Methods: Transmission and capture cross section measurements using enriched Zr-92 metallic samples were performed at the time-of flight facilities GELINA of JRC-Geel (BE) and nTOF of CERN (CH). The neutron beam passing through the samples was investigated in transmission measurements at GELINA using a Li-glass scintillator. The gamma rays emitted during the neutron capture reactions were detected by C6D6 detectors at both GELINA and nTOF. Results: Resonance parameters of individual resonances up to 81 keV were extracted from a combined resonance shape analysis of experimental transmissions and capture yields. For the majority of the resonances the parity was determined from an analysis of the transmission data obtained with different sample thicknesses. Average resonance parameters were calculated. Conclusions: Maxwellian averaged cross sections were extracted from resonances observed up to 81 keV. The MACS for kT = 30 keV is fully consistent with experimental data reported in the literature. The MACSs for kT less than or similar to 15 keV are in good agreement with those derived from the ENDF/B-VIII.0 library and recommended in the KADoNTS database. For kT higher than 30 keV differences are observed. A comparison with MACSs obtained with the cross sections recommended in the JEFF-3.3 and JENDL-4.0 libraries shows discrepancies even for kT less than or similar to 15 keV.
Address [Tagliente, G.; Barbagallo, M.; Colonna, N.; Mastromarco, M.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: giuseppe.tagliente@ba.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000766732800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5163
Permanent link to this record
 

 
Author n_TOF Collaboration (Tarrío, D. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title Neutron-induced fission cross sections of Th-232 and U-233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C
Volume 107 Issue 4 Pages 044616 - 21pp
Keywords
Abstract The neutron-induced fission cross sections of Th-232 and U-233 were measured relative to U-235 in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of Th-232, and from 0.7 eV in case of U-233), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (nTOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of U-233, previous results available in EXFOR, whereas in the case of Th-232 these data were obtained from our measurement, using PPACs and targets tilted 45 degrees with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those ( p, f) data with our (n, f) data on Th-232 and U-233 and on other isotopes studied earlier at nTOF using the same experimental setup.
Address [Tarrio, D.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden, Email: diego.tarrio@physics.uu.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001021341000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5618
Permanent link to this record
 

 
Author n_TOF Collaboration (Lederer, C. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title Neutron Capture Cross Section of Unstable Ni-63: Implications for Stellar Nucleosynthesis Type Journal Article
Year 2013 Publication Physical Review Letters Abbreviated Journal (up) Phys. Rev. Lett.
Volume 110 Issue 2 Pages 022501 - 5pp
Keywords
Abstract The Ni-63(n, gamma) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT = 5-100 keV with uncertainties around 20%. Stellar model calculations for a 25M(circle dot) star show that the new data have a significant effect on the s-process production of Cu-63, Ni-64, and Zn-64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.
Address [Lederer, C.; Paradela, C.; Wallner, A.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000313336500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1305
Permanent link to this record