toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reig, M.; Valle, J.W.F.; Yamada, M. url  doi
openurl 
  Title Light majoron cold dark matter from topological defects and the formation of boson stars Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 029 - 25pp  
  Keywords Cosmic strings; domain walls; monopoles; particle physics – cosmology connection; cosmology of theories beyond the SM; cosmological neutrinos  
  Abstract We show that for a relatively light majoron (<< 100 eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.  
  Address [Reig, Mario; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487690100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4154  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Searching for solar KDAR with DUNE Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 065 - 28pp  
  Keywords dark matter theory; neutrino detectors  
  Abstract The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.  
  Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000758221400019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5141  
Permanent link to this record
 

 
Author Boucenna, M.S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J.W.F. url  doi
openurl 
  Title Phenomenology of dark matter from A_4 flavor symmetry Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.  
  Volume 05 Issue 5 Pages 037 - 20pp  
  Keywords Cosmology of Theories beyond the SM; Neutrino Physics; Discrete and Finite Symmetries  
  Abstract We investigate a model in which Dark Matter is stabilized by means of a Z(2) parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed patter of neutrino mixing. In our A(4) example the standard model is extended by three extra Higgs doublets and the Z(2) parity emerges as a remnant of the spontaneous breaking of A(4) after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.  
  Address [Boucenna, M. S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291364300037 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 674  
Permanent link to this record
 

 
Author Forero, D.V.; Morisi, S.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.  
  Volume 09 Issue 9 Pages 142 - 18pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for μ-> e gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.  
  Address [Forero, DV; Morisi, S; Tortola, M; Valle, JWF] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp,Edificio Inst Paterna, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296086700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 817  
Permanent link to this record
 

 
Author Bazzocchi, F.; Morisi, S.; Peinado, E.; Valle, J.W.F.; Vicente, A. url  doi
openurl 
  Title Bilinear R-parity violation with flavor symmetry Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.  
  Volume 01 Issue 1 Pages 033 - 16pp  
  Keywords Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model; Discrete and Finite Symmetries  
  Abstract Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry Lambda(4) with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles theta(13) and theta(23) in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.  
  Address [Bazzocchi, F.] Int Sch Adv Studies SISSA, Trieste, Italy, Email: fbazzo@sissa.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315583200033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1367  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva