toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barenboim, G.; Park, W.I. url  doi
openurl 
  Title A full picture of large lepton number asymmetries of the Universe Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 048 - 10pp  
  Keywords cosmological neutrinos; cosmology of theories beyond the SM; leptogenesis; physics of the early universe  
  Abstract A large lepton number asymmetry of O(0.1-1) at present Universe might not only be allowed but also necessary for consistency among cosmological data. We show that, if a sizeable lepton number asymmetry were produced before the electroweak phase transition, the requirement for not producing too much baryon number asymmetry through sphalerons processes, forces the high scale lepton number asymmetry to be larger than about 30. Therefore a mild entropy release causing O(10-100) suppression of pre-existing particle density should take place, when the background temperature of the Universe is around T = O(10(-2) -10(2)) GeV for a large but experimentally consistent asymmetry to be present today. We also show that such a mild entropy production can be obtained by the late-time decays of the saxion, constraining the parameters of the Peccei-Quinn sector such as the mass and the vacuum expectation value of the saxion field to be m(phi) greater than or similar to O(10) TeV and phi(0) greater than or similar to O(10(14)) GeV, respectively.  
  Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000401806200048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3148  
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I. url  doi
openurl 
  Title Lepton number asymmetries and the lower bound on the reheating temperature Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 037 - 13pp  
  Keywords cosmological neutrinos; physics of the early universe  
  Abstract We show that the reheating temperature of a matter-domination era in the early universe can be pushed down to the neutrino decoupling temperature at around 2 MeV if the reheating takes place through non-hadronic decays of the dominant matter and neutrino-antineutrino asymmetries are still large enough, vertical bar L vertical bar greater than or similar to O(10(-2)) (depending on the neutrino flavor) at the end of reheating.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000418672700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3430  
Permanent link to this record
 

 
Author Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J. url  doi
openurl 
  Title How to relax the cosmological neutrino mass bound Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 049 - 18pp  
  Keywords neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS  
  Abstract We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.  
  Address [Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466578400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4001  
Permanent link to this record
 

 
Author Barenboim, G.; Chen, J.Z.; Hannestad, S.; Oldengott, I.M.; Tram, T.; Wong, Y.Y.Y. url  doi
openurl 
  Title Invisible neutrino decay in precision cosmology Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 087 - 53pp  
  Keywords cosmological neutrinos; neutrino properties; CMBR theory; cosmological parameters from CMBR  
  Abstract We revisit the topic of invisible neutrino decay in the precision cosmological context, via a first-principles approach to understanding the cosmic microwave background and large-scale structure phenomenology of such a non-standard physics scenario. Assuming an effective Lagrangian in which a heavier standard-model neutrino nu(H) couples to a lighter one nu(l) and a massless scalar particle phi via a Yukawa interaction, we derive from first principles the complete set of Boltzmann equations, at both the spatially homogeneous and the firstorder inhomogeneous levels, for the phase space densities of nu(H), nu(l), and phi in the presence of the relevant decay and inverse decay processes. With this set of equations in hand, we perform a critical survey of recent works on cosmological invisible neutrino decay in both limits of decay while nu(H) is ultra-relativistic and non-relativistic. Our two main findings are: (i) in the non-relativistic limit, the effective equations of motion used to describe perturbations in the neutrino-scalar system in the existing literature formally violate momentum conservation and gauge invariance, and (ii) in the ultra-relativistic limit, exponential damping of the anisotropic stress does not occur at the commonly-used rate Gamma(T) = (1/tau(0))( m(nu H)/E-nu H)(3), but at a rate similar to (1/ tau(0))(m(nu H)/E-nu H)(5). Both results are model-independent. The impact of the former finding on the cosmology of invisible neutrino decay is likely small. The latter, however, implies a significant revision of the cosmological limit on the neutrino lifetime tau(0) from tau(old)(0) greater than or similar to 1.2 x 10(9) s (m(nu H)/50 meV)(3) to tau(0) greater than or similar to (4 x 10(5) -> 4 x 10(6)) s (m(nu H)/50 meV)(5).  
  Address [Barenboim, Gabriela; Oldengott, Isabel M.] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636717400082 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4782  
Permanent link to this record
 

 
Author Barenboim, G.; Blinov, N.; Stebbins, A. url  doi
openurl 
  Title Smallest remnants of early matter domination Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 026 - 50pp  
  Keywords cosmology of theories beyond the SM; physics of the early universe; cosmological perturbation theory  
  Abstract The evolution of the universe prior to Big Bang Nucleosynthesis could have gone through a phase of early matter domination which enhanced the growth of small-scale dark matter structure. If this period was long enough, self-gravitating objects formed prior to reheating. We study the evolution of these dense early halos through reheating. At the end of early matter domination, the early halos undergo rapid expansion and eventually eject their matter. We find that this process washes out structure on scales much larger than naively expected from the size of the original halos. We compute the density profiles of the early halo remnants and use them to construct late-time power spectra that include these non-linear effects. We evolve the resulting power spectrum to estimate the properties of microhalos that would form after matter-radiation equality. Surprisingly, cosmologies with a short period of early matter domination lead to an earlier onset of microhalo formation compared to those with a long period. In either case, dark matter structure formation begins much earlier than in the standard cosmology, with most dark matter bound in microhalos in the late universe.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000734341100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5060  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva