toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 022  
  Keywords  
  Abstract We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60 degrees, detected at the Pierre Auger Observatory. the geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the similar to 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298141300022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 865  
Permanent link to this record
 

 
Author Semikoz, V.B.; Valle, J.W.F. url  doi
openurl 
  Title Chern-Simons anomaly as polarization effect Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 048  
  Keywords  
  Abstract The parity violating, Chern-Simons term in the epoch before the electroweak phase transition can be interpreted as a polarization effect associated to massless right-handed electrons (positrons) in the presence of a large-scale seed hypermagnetic field. We reconfirm the viability of a unified seed field scenario relating the cosmological baryon asymmetry and the origin of the protogalactic large-scale magnetic fields observed in astronomy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298141300048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 866  
Permanent link to this record
 

 
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Strege, C.; Trotta, R. url  doi
openurl 
  Title Global fits of the cMSSM including the first LHC and XENON100 data Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 015 - 23pp  
  Keywords dark matter theory; supersymmetry and cosmology  
  Abstract We present updated global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM), including the most recent constraints from the ATLAS and CMS detectors at the LHC, as well as the most recent results of the XENON100 experiment. Our robust analysis takes into account both astrophysical and hadronic uncertainties that enter in the calculation of the rate of WIMP-induced recoils in direct detection experiment. We study the consequences for neutralino Dark Matter, and show that current direct detection data already allow to robustly rule out the so-called Focus Point region, therefore demonstrating the importance of particle astrophysics experiments in constraining extensions of the Standard Model of Particle Physics. We also observe an increased compatibility between results obtained from a Bayesian and a Frequentist statistical perspective. We find that upcoming ton-scale direct detection experiments will probe essentially the entire currently favoured region (at the 99% level), almost independently of the statistical approach used. Prospects for indirect detection of the cMSSM are further reduced.  
  Address [Bertone, Gianfranco] Univ Amsterdam, GRAPPA Inst, NL-1090 GL Amsterdam, Netherlands, Email: gf.bertone@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 936  
Permanent link to this record
 

 
Author Bertone, G.; Cumberbatch, D.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Dark Matter searches: the nightmare scenario Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 004 - 24pp  
  Keywords dark matter theory; dark matter experiments; neutrino detectors; solar and atmospheric neutrinos  
  Abstract The unfortunate case where the Large Hadron Collider (LHC) fails to discover physics Beyond the Standard Model (BSM) is sometimes referred to as the “Nightmare scenario” of particle physics. We study the consequences of this hypothetical scenario for Dark Matter (DM), in the framework of the constrained Minimal Supersymmetric Standard Model (cMSSM). We evaluate the surviving regions of the cMSSM parameter space after null searches at the LHC, using several different LHC configurations, and study the consequences for DM searches with ton-scale direct detectors and the IceCube neutrino telescope. We demonstrate that ton-scale direct detection experiments will be able to conclusively probe the cMSSM parameter space that would survive null searches at the LHC with 100 fb(-1) of integrated luminosity at 14TeV. We also demonstrate that IceCube (80 strings plus DeepCore) will be able to probe as much as similar or equal to 17% of the currently favoured parameter space after 5 years of observation.  
  Address [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland, Email: bertone@iap.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 937  
Permanent link to this record
 

 
Author Bringmann, T.; Donato, F.; Lineros, R.A. url  doi
openurl 
  Title Radio data and synchrotron emission in consistent cosmic ray models Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 049 - 12pp  
  Keywords cosmic ray theory; dark matter theory  
  Abstract It is well established that phenomenological two-zone diffusion models of the galactic halo can very well reproduce cosmic-ray nuclear data and the observed antiproton flux. Here, we consider lepton propagation in such models and compute the expected galactic population of electrons, as well as the diffuse synchrotron emission that results from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors very large (L greater than or similar to 15 kpc) and, even stronger, small (L less than or similar to 1 kpc) effective diffusive halo sizes. This has profound implications for, e.g., in direct dark matter searches.  
  Address [Bringmann, Torsten] Univ Hamburg, Inst Theoret Phys, D-22761 Hamburg, Germany, Email: torsten.bringmann@desy.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 938  
Permanent link to this record
 

 
Author Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title Galactic synchrotron emission from WIMPs at radio frequencies Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 005 - 25pp  
  Keywords dark matter theory; cosmic ray theory; absorption and radiation processes  
  Abstract Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with “thermal” annihilation cross-sections, i.e. (sigma v) = 3 x 10(-26) cm(3) s(-1); and masses M-DM less than or similar to 10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.  
  Address [Fornengo, Nicolao; Regis, Marco] Univ Turin, Dipartimento Fis Teor, Ist Nazl Fis Nucl, I-10125 Turin, Italy, Email: fornengo@to.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 939  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Guinea, F.; Fogler, M.M.; Katsnelson, M.I.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J. url  doi
openurl 
  Title GraXe, graphene and xenon for neutrinoless double beta decay searches Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 037 - 17pp  
  Keywords neutrino experiments; double beta decay  
  Abstract We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, grapheme. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the Xe-136 isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope Xe-136 is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.  
  Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Monrabal, F.; Munoz Vidal, J.] CSIC, Inst Fis Corpuscular, IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301176000038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 987  
Permanent link to this record
 

 
Author Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title Cosmological radio emission induced by WIMP Dark Matter Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 033 - 27pp  
  Keywords dark matter theory; power spectrum  
  Abstract We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.  
  Address [Fornengo, N.; Regis, M.] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy, Email: fornengo@to.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302949600033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 999  
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Schwetz, T.; Zupan, J. url  doi
openurl 
  Title On the annual modulation signal in dark matter direct detection Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 005 - 28pp  
  Keywords dark matter theory; dark matter experiments; dark matter detectors  
  Abstract We derive constraints on the annual modulation signal in Dark Matter (DM) direct detection experiments in terms of the unmodulated event rate. A general bound independent of the details of the DM distribution follows from the assumption that the motion of the earth around the sun is the only source of time variation. The bound is valid for a very general class of particle physics models and also holds in the presence of an unknown unmodulated background. More stringent bounds are obtained, if modest assumptions on symmetry properties of the DM halo are adopted. We illustrate the bounds by applying them to the annual modulation signals reported by the DAMA and CoGeNT experiments in the framework of spin-independent elastic scattering. While the DAMA signal satisfies our bounds, severe restrictions on the DM mass can be set for CoGeNT.  
  Address [Herrero-Garcia, Juan; Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: juan.a.herrero@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302949600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1000  
Permanent link to this record
 

 
Author Strege, C.; Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal (up) J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 030 - 22pp  
  Keywords dark matter theory; dark matter experiments  
  Abstract We present new global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM), including LHC 1/fb integrated luminosity SUSY exclusion limits, recent LHC 5/fb constraints on the mass of the Higgs boson and XENON100 direct detection data. Our analysis fully takes into account astrophysical and hadronic uncertainties that enter the analysis when translating direct detection limits into constraints on the cMSSM parameter space. We provide results for both a Bayesian and a Frequentist statistical analysis. We find that LHC 2011 constraints in combination with XENON100 data can rule out a significant portion of the cMSSM parameter space. Our results further emphasise the complementarity of collider experiments and direct detection searches in constraining extensions of Standard Model physics. The LHC 2011 exclusion limit strongly impacts on low-mass regions of cMSSM parameter space, such as the stau co-annihilation region, while direct detection data can rule out regions of high SUSY masses, such as the Focus-Point region, which is unreachable for the LHC in the near future. We show that, in addition to XENON100 data, the experimental constraint on the anomalous magnetic moment of the muon plays a dominant role in disfavouring large scalar and gaugino masses. We find that, should the LHC 2011 excess hinting towards a Higgs boson at 126 GeV be confirmed, currently favoured regions of the cMSSM parameter space will be robustly ruled out from both a Bayesian and a profile likelihood statistical perspective.  
  Address [Strege, C.; Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302949600030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1001  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva