toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caballero-Folch, R. et al; Agramunt, J.; Tain, J.L.; Algora, A.; Domingo-Pardo, C.; Guadilla, V.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Tarifeño-Saldivia, A.; Tolosa-Delgado, A. url  doi
openurl 
  Title First determination of beta-delayed multiple neutron emission beyond A=100 through direct neutron measurement: The P-2n value of Sb-136 Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 98 Issue 3 Pages 034310 - 10pp  
  Keywords  
  Abstract Background: beta-delayed multiple neutron emission has been observed for some nuclei with A <= 100 being the Rb-100 the heaviest beta 2n emitter measured to date. So far only 25 P-2n values have been determined for the approximate to 300 nuclei that may decay in this way. Accordingly it is of interest to measure P-2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A > 100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition the decay properties of these nuclei are fundamental for the understanding of astrophysical nucleosynthesis processes such as the r-process and safety inputs for nuclear reactors. Purpose: To determine for the first time the two-neutron branching ratio the P-2n value for Sb-136 through a direct neutron measurement and to provide precise P-1n values for Sb-136 and Te-136. Method: A pure beam of each isotope of interest was provided by the JYFLTRAP Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility of the University of Jyvaskyla Finland. The purified ions were implanted into a moving tape at the end of the beam line. The detection setup consisted of a plastic scintillator placed right behind the implantation point after the tape to register the beta decays and the BELEN detector based on neutron counters embedded in a polyethylene matrix. The analysis was based on the study of the beta- and neutron-growth-and-decay curves and the beta-one-neutron and beta-two-neutron time correlations which allowed us the determination of the neutron branching ratios. Results: The P-2n value of Sb-136 was found to be 0.14(3)% and the measured P-1n values for Sb-136 and Te-136 were found to be 32.2(15)% and 1.47(6)% respectively. Conclusions: The measured P-2n value is a factor 44 smaller than predicted by the finite-range droplet model plus the quasiparticle random-phase approximation (FRDM+QRPA) model used for r-process calculations.  
  Address [Caballero-Folch, R.; Dillmann, I] TRIUMF, Vancouver, BC V6T 2A3, Canada, Email: rcaballero-folch@triumf.ca  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444207600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3728  
Permanent link to this record
 

 
Author Guadilla, V.; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Total absorption gamma-ray spectroscopy of niobium isomers Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 100 Issue 2 Pages 024311 - 15pp  
  Keywords  
  Abstract The beta-intensity distributions of the decays of Nb-100gs,Nb-100m and Nb-102gs,Nb-102m have been determined using the total absorption gamma-ray spectroscopy technique. The JYFLTRAP double Penning trap system was employed in a campaign of challenging measurements performed with the decay total absorption gamma-ray spectrometer at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla. Different strategies were applied to disentangle the isomeric states involved, lying very close in energy. The low-spin component of each niobium case was populated through the decay of the zirconium parent, which was treated as a contaminant. We have applied a method to extract this contamination, and additionally we have obtained beta-intensity distributions for these zirconium decays. The beta-strength distributions evaluated with these results were compared with calculations in a quasiparticle random-phase approximation, suggesting a prolate configuration for the ground states of Zr-100,Zr-102. The footprint of the Pandemonium effect was found when comparing our results for the analyses of the niobium isotopes with previous decay data. The beta-intensities of the decay of Nb-102m, for which there were no previous data, were obtained. A careful evaluation of the uncertainties was carried out, and the consistency of our results was validated taking advantage of the segmentation of our spectrometer. The final results were used as input in reactor summation calculations. A large impact on antineutrino spectrum calculations was already reported, and here we detail the significant impact on decay heat calculations.  
  Address [Guadilla, V; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000480237600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4105  
Permanent link to this record
 

 
Author Guadilla, V. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Total absorption gamma-ray spectroscopy of the beta-delayed neutron emitters I-137 and Rb-95 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 100 Issue 4 Pages 044305 - 17pp  
  Keywords  
  Abstract The decays of the beta-delayed neutron emitters( 137)I and Rb-95 have been studied with the total absorption gamma-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption gamma-ray spectrometer, a segmented detector composed of 18 NaI(T1) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt gamma rays and delayed neutron interactions to eliminate this source of contamination. Due to the sensitivity of our spectrometer, we have found a significant amount of beta intensity to states above the neutron separation energy that deexcite by gamma rays, comparable to the neutron emission probability. The competition between gamma deexcitation and neutron emission has been compared with Hauser-Feshbach calculations, and it can be understood as a nuclear structure effect. In addition, we have studied the impact of the beta-intensity distributions determined in this work on reactor decay heat and reactor antineutrino spectrum summation calculations. The robustness of our results is demonstrated by a thorough study of uncertainties and with the reproduction of the spectra of the individual modules and the module-multiplicity gated spectra. This work represents the state-of-the-art of our analysis methodology for segmented total absorption spectrometers.  
  Address [Guadilla, V; Tain, J. L.; Algora, A.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000489250100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4169  
Permanent link to this record
 

 
Author Jungclaus, A. et al; Montaner-Piza, A. doi  openurl
  Title Evolution of proton single-particle states in neutron-rich Sb isotopes beyond N=82 Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 102 Issue 3 Pages 034324 - 11pp  
  Keywords  
  Abstract The beta decay of the semimagic Sn isotopes Sn-136,Sn-137,Sn-138 has been studied at the Radioactive Isotope Beam Factory at the RIKEN Nishina Center. The first experimental information on excited states was obtained for Sb-137 while, in the case of Sb-136, the established excitation scheme could be extended by ten previously unidentified levels. In the decay of the most-neutron-rich isotope Sn-138, two gamma rays were observed for the first time. The new experimental results, in combination with state-of-the-art shell-model calculations, provide the first information with respect to the evolution of the Og(7/2) and 1d(5/2) proton single-particle states with increasing neutron number beyond N = 84.  
  Address [Jungclaus, A.; Taprogge, J.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: andrea.jungclaus@csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000575177000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4561  
Permanent link to this record
 

 
Author Guadilla, V. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Determination of beta-decay ground state feeding of nuclei of importance for reactor applications Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 102 Issue 6 Pages 064304 - 12pp  
  Keywords  
  Abstract In beta-decay studies the determination of the decay probability to the ground state (g.s.) of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed gamma-ray emission. In this work we revisit the 4 pi gamma – beta method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the beta-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large g.s. branches. The method is relevant for nuclear structure studies as well. Pertinent formulas are revised and extended to the special case of beta-delayed neutron emitters, and the robustness of the method is demonstrated with synthetic data. We apply it to a number of measured decays that serve as test cases and discuss the features of the method. Finally, we obtain g.s. feeding intensities with reduced uncertainty for four relevant decays that will allow future improvements in antineutrino spectrum and decay heat calculations using the summation method.  
  Address [Guadilla, V; Tain, J. L.; Algora, A.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595153500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4626  
Permanent link to this record
 

 
Author Orrigo, S.E A. et al; Rubio, B.; Gelletly, W.; Aguilera, P.; Algora, A.; Morales, A.I.; Agramunt, J.; Guadilla, V.; Montaner-Piza, A. url  doi
openurl 
  Title beta decay of the very neutron-deficient Ge-60 and Ge-62 nuclei Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 103 Issue 1 Pages 014324 - 12pp  
  Keywords  
  Abstract We report here the results of a study of the beta decay of the proton-rich Ge isotopes, Ge-60 and Ge-62, produced in an experiment at the RIKEN Nishina Center. We have improved our knowledge of the half-lives of Ge-62 [73.5(1) ms] and Ge-60 [25.0(3) ms] and its daughter nucleus, Ga-60 [69.4(2) ms]. We measured individual beta-delayed proton and gamma emissions and their related branching ratios. Decay schemes and absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. A total beta-delayed proton-emission branching ratio of 67(3)% has been obtained for Ge-60. New information has been obtained on the energy levels populated in Ga-60 and on the 1/2(-) excited state in the beta p daughter Zn-59. We extracted a ground state-to-ground state feeding of 85.3(3)% for the decay of Ge-62. Eight new y lines have been added to the deexcitation of levels populated in the Ga-62 daughter.  
  Address [Orrigo, S. E. A.; Rubio, B.; Gelletly, W.; Aguilera, P.; Algora, A.; Morales, A., I; Agramunt, J.; Guadilla, V; Montaner-Piza, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: sonja.orrigo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000613141500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4716  
Permanent link to this record
 

 
Author Moon, B. et al; Montaner-Piza, A. doi  openurl
  Title Nuclear structure of Te isotopes beyond neutron magic number N=82 Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 103 Issue 3 Pages 034320 - 15pp  
  Keywords  
  Abstract Newly observed decay schemes of the nuclei Sb-137 and Sb-138 are reported. The neutron-rich Sb isotopes were produced by the in-flight fragmentation of a U-238 primary beam with an energy of 345 MeV/nucleon. Several new excited states of Te-137 with tentatively assigned spin-parities of (5/2(-)), (9/2(-)), and (7/2) have been established which play an important role in the evolution of neutron levels beyond N = 82. The study of the beta decay of Sb-138 led to a considerable extension of the level scheme of Te-138 including the identification of several nonyrast states. The structure of Te-137 and Te-138 is discussed on the basis of large-scale shell-model calculations performed using two different effective interactions.  
  Address [Moon, B.; Moon, C-B] Inst for Basic Sci Korea, Ctr Exot Nucl Studies, Daejeon 34126, South Korea, Email: andrea.jungclaus@csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647588800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4813  
Permanent link to this record
 

 
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Total absorption gamma-ray spectroscopy of the ss decays of Y-96gs,Y-m Type Journal Article
  Year 2022 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 106 Issue 1 Pages 014306 - 14pp  
  Keywords  
  Abstract The ss decays of the ground state (gs) and isomeric state (m) of Y-96 have been studied with the total absorption gamma-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8(+) isomeric state from the 0(-) ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The ss-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in Zr-96, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the ss-detector efficiency, influencing the ss-intensity distribution obtained. Our results for Y-96gs (0(-)) confirm the large ground state to ground state ss-intensity probability, although a slightly larger value than reported in previous studies was obtained, amounting to 96.6(-2.1)(+0.3) % of the total ss intensity. Given that the decay of Y-96gs is the second most important contributor to the reactor antineutrino spectrum between 5 and 7 MeV, the impact of the present results on reactor antineutrino summation calculations has been evaluated. In the decay of Y-96m (8(+)), previously undetected ss intensity in transitions to states above 6 MeV has been observed. This shows the importance of total absorption gamma-ray spectroscopy measurements of ss decays with highly fragmented deexcitation patterns. Y-96m (8(+)) is a major contributor to reactor decay heat in uranium-plutonium and thorium-uranium fuels around 10 s after fission pulses, and the newly measured average ss and gamma energies differ significantly from the previous values in evaluated databases. The discrepancy is far above the previously quoted uncertainties. Finally, we also report on the successful implementation of an innovative total absorption gamma-ray spectroscopy analysis of the module-multiplicity gated spectra, as a first proof of principle to distinguish between decaying states with very different spin-parity values.  
  Address [Guadilla, V; Le Meur, L.; Fallot, M.; Briz, J. A.; Estienne, M.; Giot, L.; Porta, A.; Cucoanes, A.; Shiba, T.; Zakari-Issoufou, A-A] Univ Nantes, Subatech, IMT Atlantique, CNRS IN2P3, F-44307 Nantes, France, Email: vguadilla@fuw.edu.pl  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000832364800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5313  
Permanent link to this record
 

 
Author Watanabe, H. et al; Montaner-Piza, A. doi  openurl
  Title Isomers in Pd-128 and Pd-126: Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes Type Journal Article
  Year 2013 Publication Physical Review Letters Abbreviated Journal (up) Phys. Rev. Lett.  
  Volume 111 Issue 15 Pages 152501 - 5pp  
  Keywords  
  Abstract The level structures of the very neutron-rich nuclei Pd-128 and Pd-126 have been investigated for the first time. In the r-process waiting-point nucleus Pd-128, a new isomer with a half-life of 5.8(8) μs is proposed to have a spin and parity of 8(+) and is associated with a maximally aligned configuration arising from the g(9/2) proton subshell with seniority v = 2. For Pd-126, two new isomers have been identified with half-lives of 0.33(4) and 0.44(3) μs. The yrast 2(+) energy is much higher in Pd-128 than in Pd-126, while the level sequence below the 8(+) isomer in Pd-128 is similar to that in the N = 82 isotone Cd-130. The electric quadrupole transition that depopulates the 8(+) isomer in Pd-128 is more hindered than the corresponding transition in Cd-130, as expected in the seniority scheme for a semimagic, spherical nucleus. These experimental findings indicate that the shell closure at the neutron number N = 82 is fairly robust in the neutron-rich Pd isotopes.  
  Address [Watanabe, H.] Beihang Univ, Int Res Ctr Nuclei & Particles Cosmos, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325372500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1605  
Permanent link to this record
 

 
Author Taprogge, J. et al; Gadea, A.; Montaner-Piza, A. doi  openurl
  Title 1p(3/2) Proton-Hole State in Sn-132 and the Shell Structure Along N=82 Type Journal Article
  Year 2014 Publication Physical Review Letters Abbreviated Journal (up) Phys. Rev. Lett.  
  Volume 112 Issue 13 Pages 132501 - 6pp  
  Keywords  
  Abstract A low-lying state in In-131(82), the one-proton hole nucleus with respect to double magic Sn-132, was observed by its gamma decay to the I-pi 1/2(-) beta-emitting isomer. We identify the new state at an excitation energy of E-x = 1353 keV, which was populated both in the beta decay of Cd-131(83) and after beta-delayed neutron emission from Cd-132(84), as the previously unknown pi p(3/2) single-hole state with respect to the Sn-132 core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N = 82 isotones below Sn-132. The results evidence a surprising absence of proton subshell closures along the chain of N = 82 isotones. The consequences of this finding for the evolution of the N = 82 shell gap along the r-process path are discussed.  
  Address [Taprogge, J.; Jungclaus, A.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: andrea.jungclaus@csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334336600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1759  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva