Fanchiotti, H., Garcia Canal, C. A., Traini, M., & Vento, V. (2022). Signatures of excited monopolium. Eur. Phys. J. Plus, 137(12), 1316–19pp.
Abstract: We study electromagnetic properties of particles with magnetic moment and no charge using their behavior when traversing coils and solenoids. These particles via the Faraday-Lenz law create a current whose energy we calculate. We analyze both the case of very long lived, almost stable, particles and those with a finite lifetime. We use this development to study the behavior of monopolium a monopole-antimonopole bound state in its excited states.
|
Fanchiotti, H., Garcia Canal, C. A., & Vento, V. (2023). Energy loss of monopolium in a medium. Eur. Phys. J. Plus, 138(9), 850–11pp.
Abstract: We study the energy loss of excited monopolium in an atomic medium. We perform a classical calculation in line with a similar calculation performed for charged particles which leads in the non-relativistic limit to the Bethe-Bloch formula except for the density dependence of the medium, which we do not consider in this paper. Our result shows that for maximally deformed Rydberg states, the ionization of monopolium in a light atomic medium is similar to that of light ions.
|
Fanchiotti, H., Garcia Canal, C. A., & Vento, V. (2025). Do heavy monopoles hide from us? Eur. Phys. J. Plus, 140(2), 170–8pp.
Abstract: Dirac demonstrated that the existence of a single magnetic monopole in the universe could explain the discrete nature of electric charge. Magnetic monopoles naturally arise in most grand unified theories. However, the extensive experimental searches conducted thus far have not been successful. Here, we propose a mechanism in which magnetic monopoles bind deeply with neutral states, effectively hiding some of the properties of free monopoles. We explore various scenarios for these systems and analyze their detectability. In particular, one scenario is especially interesting, as it predicts a light state-an analog of an electron but with magnetic charge instead of electric charge-which we refer to as a magnetron.
|
Mantovani-Sarti, V., Drago, A., Vento, V., & Park, B. Y. (2013). The Baryon Number Two System in the Chiral Soliton Model. Few-Body Syst., 54(1-4), 513–516.
Abstract: We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.
|
Rinaldi, M., Scopetta, S., Traini, M., & Vento, V. (2015). Double Parton Distributions in Light-Front Constituent Quark Models. Few-Body Syst., 56(6-9), 515–521.
Abstract: Double parton distribution functions (dPDF), accessible in high energy proton-proton and proton-nucleus collisions, encode information on how partons inside a proton are correlated among each other and could represent a tool to explore the 3D proton structure. In recent papers, double parton correlations have been studied in the valence quark region, by means of constituent quark models. This framework allows to understand clearly the dynamical origin of the correlations and to establish which, among the features of the results, are model independent. Recent relevant results, obtained in a relativistic light-front scheme, able to overcome some drawbacks of previous calculations, such as the poor support, will be presented. Peculiar transverse momentum correlations, generated by the correct treatment of the boosts, are obtained. The role of spin correlations will be also shown. In this covariant approach, the symmetries of the dPDFs are unambiguously reproduced. The study of the QCD evolution of the model results has been performed in the valence sector, showing that, in some cases, the effect of evolution does not cancel that of correlations.
|