Blume, M., Martinez-Moller, A., Keil, A., Navab, N., & Rafecas, M. (2010). Joint Reconstruction of Image and Motion in Gated Positron Emission Tomography. IEEE Trans. Med. Imaging, 29(11), 1892–1906.
Abstract: We present a novel intrinsic method for joint reconstruction of both image and motion in positron emission tomography (PET). Intrinsic motion compensation methods exclusively work on the measured data, without any external motion measurements. Most of these methods separate image from motion estimation: They use deformable image registration/optical flow techniques in order to estimate the motion from individually reconstructed gates. Then, the image is estimated based on this motion information. With these methods, a main problem lies in the motion estimation step, which is based on the noisy gated frames. The more noise is present, the more inaccurate the image registration becomes. As we show both visually and quantitatively, joint reconstruction using a simple deformation field motion model can compete with state-of-the-art image registration methods which use robust multilevel B-spline motion models.
|
Llosa, G., Trovato, M., Barrio, J., Etxebeste, A., Muñoz, E., Lacasta, C., et al. (2016). First Images of a Three-layer compton Telescope prototype for Treatment Monitoring in hadron Therapy. Front. Oncol., 6, 14–6pp.
Abstract: A Compton telescope for dose monitoring in hadron therapy is under development at IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomulti-plier arrays. Na-22 sources have been successfully imaged reconstructing the data with an ML-EM code. Calibration and temperature stabilization are necessary for the prototype operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been obtained in the first imaging tests.
|
Llosa, G., & Rafecas, M. (2023). Hybrid PET/Compton-camera imaging: an imager for the next generation. Eur. Phys. J. Plus, 138(3), 214–19pp.
Abstract: Compton cameras can offer advantages over gamma cameras for some applications, since they are well suited for multitracer imaging and for imaging high-energy radiotracers, such as those employed in radionuclide therapy. While in conventional clinical settings state-of-the-art Compton cameras cannot compete with well-established methods such as PET and SPECT, there are specific scenarios in which they can constitute an advantageous alternative. The combination of PET and Compton imaging can benefit from the improved resolution and sensitivity of current PET technology and, at the same time, overcome PET limitations in the use of multiple radiotracers. Such a system can provide simultaneous assessment of different radiotracers under identical conditions and reduce errors associated with physical factors that can change between acquisitions. Advances are being made both in instrumentation developments combining PET and Compton cameras for multimodal or three-gamma imaging systems, and in image reconstruction, addressing the challenges imposed by the combination of the two modalities or the new techniques. This review article summarizes the advances made in Compton cameras for medical imaging and their combination with PET.
|