|   | 
Details
   web
Records
Author Bernardoni, F.; Hernandez, P.; Necco, S.
Title Heavy-light mesons in the epsilon-regime Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 01 Issue 1 Pages 070 - 30pp
Keywords Lattice QCD; Heavy Quark Physics; Chiral Lagrangians
Abstract We study the finite-size scaling of heavy-light mesons in the static limit. We compute two-point functions of chiral current densities as well as pseudoscalar densities in the epsilon-regime of heavy meson Chiral Perturbation Theory (HMChPT). As expected, finite volume dependence turns out to be significant in this regime and can be predicted in the effective theory in terms of the infinite-volume low-energy couplings. These results might be relevant for extraction of heavy-meson properties from lattice simulations.
Address [Bernardoni, F.; Hernandez, P.] Univ Valencia, Dpto Fis Teor, E-46071 Valencia, Spain, Email: fabio.bernardoni@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000273717700041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 510
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.
Title Minimal models with light sterile neutrinos Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 07 Issue 7 Pages 105
Keywords
Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extensions of the Standard Model (SM) with n(R) gauge singlet fermions (“right-handed neutrinos”), that can account for neutrino masses. We consider the most general coupling of the new fields to the SM fields, in particular those that break lepton number and we do not assume any a priori hierarchy in the mass parameters. We proceed to analyze these models starting from the lowest level of complexity, defined by the number of extra fermionic degrees of freedom. The simplest choice that has enough free parameters in principle (i.e. two mass differences and two angles) to explain the confirmed solar and atmospheric oscillations corresponds to n(R) = 1. This minimal choice is shown to be excluded by data. The next-to-minimal choice corresponds to n(R) = 2. We perform a systematic study of the full parameter space in the limit of degenerate Majorana masses by requiring that at least two neutrino mass differences correspond to those established by solar and atmospheric oscillations. We identify several types of spectra that can fit long-baseline reactor and accelerator neutrino oscillation data, but fail in explaining solar and/or atmospheric data. The only two solutions that survive are the expected seesaw and quasi-Dirac regions, for which we set lower and upper bounds respectively on the Majorana mass scale. Solar data from neutral current measurements provide essential information to constrain the quasi-Dirac region. The possibility to accommodate the LSND/MiniBoone and reactor anomalies, and the implications for neutrinoless double-beta decay and tritium beta decay are briefly discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000293741500041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 760
Permanent link to this record
 

 
Author Coloma, P.; Donini, A.; Fernandez-Martinez, E.; Hernandez, P.
Title Precision on leptonic mixing parameters at future neutrino oscillation experiments Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 06 Issue 6 Pages 073 - 27pp
Keywords Neutrino Physics; CP violation; Standard Model
Abstract We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta(13) and the CP phase, delta, assuming that theta(13) is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta(13) and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta(13) below 3% and an error on delta of <= 7 degrees at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.
Address [Coloma, P.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: coloma@vt.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000306416500074 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1141
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T.
Title The minimal 3+2 neutrino model versus oscillation anomalies Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 07 Issue 7 Pages 161 - 20pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard 3 nu model and similarly to the 3 + 2 phenomenological models, even though the number of free parameters is much smaller than in the latter. Accounting for the anomalies in the minimal model favours a normal hierarchy of the light states and requires a large reactor angle, in agreement with recent measurements. Our analysis of the model employs a new parametrization of seesaw models that extends the Casas-Ibarra one to regimes where higher order corrections in the light-heavy mixings are significant.
Address [Donini, A.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: andrea.donini@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307299800039 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1161
Permanent link to this record
 

 
Author Agarwalla, S.K.; Hernandez, P.
Title Probing the neutrino mass hierarchy with Super-Kamiokande Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 10 Issue 10 Pages 086 - 14pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We show that for recently discovered large values of theta(13), a superbeam with an average neutrino energy of similar to 5 GeV, such as those being proposed at CERN, if pointing to Super-Kamiokande (L similar or equal to 8770 km), could reveal the neutrino mass hierarchy at 5 sigma in less than two years irrespective of the true hierarchy and CP phase. The measurement relies on the near resonant matter effect in the nu(mu) -> nu(e) oscillation channel, and can be done counting the total number of appearance events with just a neutrino beam.
Address [Agarwalla, Sanjib Kumar; Hernandez, Pilar] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000310851600047 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1251
Permanent link to this record
 

 
Author Della Morte, M.; Hernandez, P.
Title A non-perturbative study of massive gauge theories Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 11 Issue 11 Pages 213 - 20pp
Keywords
Abstract We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1765
Permanent link to this record
 

 
Author Hernandez, P.; Kekic, M.; Lopez-Pavon, J.; Racker, J.; Rius, N.
Title Leptogenesis in GeV-scale seesaw models Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 10 Issue 10 Pages 067 - 34pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics; CP violation
Abstract We revisit the production of leptonic asymmetries in minimal extensions of the Standard Model that can explain neutrino masses, involving extra singlets with Majorana masses in the GeV scale. We study the quantum kinetic equations both analytically, via a perturbative expansion up to third order in the mixing angles, and numerically. The analytical solution allows us to identify the relevant CP invariants, and simplifies the exploration of the parameter space. We find that sizeable lepton asymmetries are compatible with non-degenerate neutrino masses and measurable active-sterile mixings.
Address [Hernandez, P.; Kekic, M.; Racker, J.; Rius, N.] Univ Valencia, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: m.pilar.hernandez@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000363555500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2425
Permanent link to this record
 

 
Author Hernandez, P.; Kekic, M.; Lopez-Pavon, J.; Racker, J.; Salvado, J.
Title Testable baryogenesis is in seesaw models Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 08 Issue 8 Pages 157 - 29pp
Keywords Cosmology of Theories beyond the SM; CP violation; Neutrino Physics; Beyond Standard Model
Abstract We revisit the production of baryon asymmetries in the minimal type I seesaw model with heavy Majorana singlets in the GeV range. In particular we include “washout” effects from scattering processes with gauge bosons, Higgs decays and inverse decays, besides the dominant top scatterings. We show that in the minimal model with two singlets, and for an inverted light neutrino ordering, future measurements from SHiP and neutrinoless double beta decay could in principle provide sufficient information to predict the matter-antimatter asymmetry in the universe. We also show that SHiP measurements could provide very valuable information on the PMNS CP phases.
Address [Hernandez, P.; Kekic, M.; Racker, J.; Salvado, J.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: m.pilar.hernandez@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382398000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2787
Permanent link to this record
 

 
Author Caputo, A.; Hernandez, P.; Lopez-Pavon, J.; Salvado, J.
Title The seesaw portal in testable models of neutrino masses Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 06 Issue 6 Pages 112 - 20pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, d = 5, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two displaced vertices. We estimate the LHC reach to this process.
Address [Caputo, A.; Hernandez, P.; Salvado, J.] Univ Valencia, Inst Fis Corpusc, Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: andrea.caputo@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000404625300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3196
Permanent link to this record
 

 
Author Arguelles, C.A.; Coloma, P.; Hernandez, P.; Muñoz, V.
Title Searches for atmospheric long-lived particles Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 02 Issue 2 Pages 190 - 34pp
Keywords Beyond Standard Model; Neutrino Physics; Solar and Atmospheric Neutrinos
Abstract Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra U(1) gauge symmetry, and a combination of both in a U(1)(B-L) model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles.
Address [Arguelles, C.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000518622800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4323
Permanent link to this record