|   | 
Details
   web
Records
Author Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A.
Title Dirac equation as a quantum walk over the honeycomb and triangular lattices Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal (down) Phys. Rev. A
Volume 97 Issue 6 Pages 062111 - 5pp
Keywords
Abstract A discrete-time quantum walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in (2 + 1) dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice, both of interest in the study of quantum propagation on the nonrectangular grids, as in graphene-like materials. The latter, in particular, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.
Address [Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Aix Marseille Univ, Univ Toulon, LIS, CNRS, Marseille, France, Email: pablo.arrighi@univ-amu.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000435076800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3624
Permanent link to this record
 

 
Author Di Molfetta, G.; Soares-Pinto, D.O.; Duarte Queiros, S.M.
Title Elephant quantum walk Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal (down) Phys. Rev. A
Volume 97 Issue 6 Pages 062112 - 6pp
Keywords
Abstract We introduce an analytically treatable discrete time quantum walk in a one-dimensional lattice which combines non-Markovianity and hyperballistic diffusion associated with a Gaussian whose variance sigma(2)(t) grows cubicly with time sigma alpha t(3). These properties have have been numerically found in several systems, namely, tight-binding lattice models. For its rules, our model can be understood as the quantum version of the classical non-Markovian “elephant random walk” process for which the quantum coin operator only changes the value of the diffusion constant although, contrarily, to the classical coin.
Address [Di Molfetta, Giuseppe] Univ Toulon & Var, Aix Marseille Univ, Nat Computat Res Grp, CNRS,LIS, Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000435076800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3625
Permanent link to this record
 

 
Author Marquez-Martin, I.; Arnault, P.; Di Molfetta, G.; Perez, A.
Title Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal (down) Phys. Rev. A
Volume 98 Issue 3 Pages 032333 - 8pp
Keywords
Abstract Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two steps of the evolution, we define a density current which is gauge invariant and conserved. In the continuum limit, the dynamics of the particle, under a suitable choice of the parameters, becomes the Dirac equation and the conserved current satisfies the corresponding conservation equation.
Address [Marquez-Martin, Ivan; Arnault, Pablo; Di Molfetta, Giuseppe; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: ivan.marquez@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000446163200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3750
Permanent link to this record
 

 
Author Martone, G.I.; Larre, P.E.; Fabbri, A.; Pavloff, N.
Title Momentum distribution and coherence of a weakly interacting Bose gas after a quench Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal (down) Phys. Rev. A
Volume 98 Issue 6 Pages 063617 - 21pp
Keywords
Abstract We consider a weakly interacting uniform atomic Bose gas with a time-dependent nonlinear coupling constant. By developing a suitable Bogoliubov treatment we investigate the time evolution of several observables, including the momentum distribution, the degree of coherence in the system, and their dependence on dimensionality and temperature. We rigorously prove that the low-momentum Bogoliubov modes remain frozen during the whole evolution, while the high-momentum ones adiabatically follow the change in time of the interaction strength. At intermediate momenta we point out the occurrence of oscillations, which are analogous to Sakharov oscillations. We identify two wide classes of time-dependent behaviors of the coupling for which an exact solution of the problem can be found, allowing for an analytic computation of all the relevant observables. A special emphasis is put on the study of the coherence property of the system in one spatial dimension. We show that the system exhibits a smooth “light-cone effect,” with typically no prethermalization.
Address [Martone, Giovanni I.; Pavloff, Nicolas] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS,UMR 8626, F-91405 Orsay, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000452949900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3841
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title Born-Infeld inspired modifications of gravity Type Journal Article
Year 2018 Publication Physics Reports Abbreviated Journal (down) Phys. Rep.
Volume 727 Issue Pages 1-129
Keywords Born-Infeld gravity; Astrophysics; Black holes; Cosmology; Early universe; Compact objects; Singularities
Abstract General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.
Address [Beltran Jimenez, Jose] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: jose.beltran@uam.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Medium
Area Expedition Conference
Notes WOS:000425482900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3497
Permanent link to this record