toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Salas, P.F.; Lineros, R.A.; Tortola, M. url  doi
openurl 
  Title Neutrino propagation in the Galactic dark matter halo Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal (up) Phys. Rev. D  
  Volume 94 Issue 12 Pages 123001 - 14pp  
  Keywords  
  Abstract Neutrino oscillations are a widely observed and well-established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the impact of new interactions between neutrinos and the dark matter present in the Milky Way on the neutrino oscillation pattern. The dark matter-neutrino interaction is modeled by using an effective coupling proportional to the Fermi constant GF with no further restrictions on its flavor structure. For the galactic dark matter profile we consider a homogeneous distribution as well as several density profiles, estimating in all cases the size of the interaction required to get an observable effect at different neutrino energies. Our discussion is mainly focused in the PeV neutrino energy range, to be explored in observatories like IceCube and KM3NeT. The obtained results may be interpreted in terms of a light O(sub-eV-keV) or weakly interacting massive particlelike dark matter particle or as a new interaction with a mediator of O(sub-eV-keV) mass.  
  Address [de Salas, P. F.; Lineros, R. A.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular CSIC, Parc Cient,Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389028000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2873  
Permanent link to this record
 

 
Author Hagstotz, S.; de Salas, P.F.; Gariazzo, S.; Pastor, S.; Gerbino, M.; Lattanzi, M.; Vagnozzi, S.; Freese, K. url  doi
openurl 
  Title Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal (up) Phys. Rev. D  
  Volume 104 Issue 12 Pages 123524 - 20pp  
  Keywords  
  Abstract We present a consistent framework to set limits on properties of light sterile neutrinos coupled to all three active neutrinos using a combination of the latest cosmological data and terrestrial measurements from oscillations, beta-decay, and neutrinoless double-beta-decay (0 nu beta beta) experiments. We directly constrain the full 3 + 1 active-sterile mixing matrix elements vertical bar U-alpha 4 vertical bar(2) , with alpha is an element of (e,mu,tau), and the mass-squared splitting Delta m(41)(2) (math) m(4)(2) – m(1)(2). We find that results for a 3 + 1 case differ from previously studied 1 + 1 scenarios where the sterile is coupled to only one of the neutrinos, which is largely explained by parameter space volume effects. Limits on the mass splitting and the mixing matrix elements are currently dominated by the cosmological datasets. The exact results are slightly prior dependent, but we reliably find all matrix elements to be constrained below vertical bar U-alpha 4 vertical bar(2) less than or similar to 10(-3) . Short-baseline neutrino oscillation hints in favor of eV-scale sterile neutrinos arc in serious tension with these bounds, irrespective of prior assumptions. We also translate the bounds from the cosmological analysis into constraints on the parameters probed by laboratory searches, such as m(beta) or m(beta)(beta), the effective mass parameters probed by beta-decay and 0 nu beta beta searches, respectively. When allowing for mixing with a light sterile neutrino, cosmology leads to upper bounds of m(beta) < 0.09 eV and m(beta)(beta )< 0.07 eV at 95% CL, more stringent than the limits from current laboratory experiments.  
  Address [Hagstotz, Steffen; de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, Roslagstullsbacken 21A, SE-10691 Stockholm, Sweden, Email: steffen.hagstotz@fysik.su.se  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000730829500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5055  
Permanent link to this record
 

 
Author PTOLEMY Collaboration (Betti, M.G. et al); de Salas, P.F.; Gariazzo, S.; Pastor, S. url  doi
openurl 
  Title A design for an electromagnetic filter for precision energy measurements at the tritium endpoint Type Journal Article
  Year 2019 Publication Progress in Particle and Nuclear Physics Abbreviated Journal (up) Prog. Part. Nucl. Phys.  
  Volume 106 Issue Pages 120-131  
  Keywords PTOLEMY; Relic neutrino; Cosmic Neutrino Background; CNB; Neutrino mass; Transverse drift filter  
  Abstract We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E x B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems. (C) 2019 Elsevier B.V. All rights reserved.  
  Address [Hochberg, Y.] Hebrew Univ Jerusalem, Racah Inst Phys, Jerusalem, Israel, Email: cgtully@Princeton.EDU  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000464490900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3978  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva