Mantovani Sarti, V., Feijoo, A., Vidana, I., Ramos, A., Giacosa, F., Hyodo, T., et al. (2024). Constraining the low-energy S =-2 meson-baryon interaction with two-particle correlations. Phys. Rev. D, 110(1), L011505–8pp.
Abstract: In this paper we present a novel method to extract information on hadron-hadron interactions using for the first time femtoscopic data to constrain the low-energy constants of a QCD effective Lagrangian. This method offers a new way to investigate the nonperturbative regime of QCD in sectors where scattering experiments are not feasible, such as the multistrange and charm ones. As an example of its application, we use the very precise K-Lambda correlation function data, recently measured in pp collisions at LHC, to constrain the strangeness S = -2 meson-baryon interaction. The model obtained delivers new insights on the molecular nature of the Xi(1620) and Xi(1690) states.
|
Feijoo, A., Mantovani Sarti, V., Nieves, J., Ramos, A., & Vidaña, I. (2025). Bridging correlation and spectroscopy measurements to access the hadron interaction behind molecular states: The case of the Ξ(1620) and Ξ(1690) in the K – Λ system. Phys. Rev. D, 111(1), 014022–15pp.
Abstract: We study the compatibility between the K-A correlation function, recently measured by the ALICE collaboration, and the LHCb K-A invariant mass distribution obtained in the -b -> J/psi AK- decay. The K-A invariant mass distribution associated with the – b decay has been calculated within the framework of unitary effective field theories using two models, one of them constrained by the K-A correlation function. We consider two degenerate pentaquark PAs states in the J/psi A scattering amplitude which allows us to investigate their impact on both the K-A and J/psi A mass distributions assuming different spin-parity quantum numbers and multiplicity. Without any fitting procedure, the K-A model is able to better reproduce the experimental K-A mass spectrum in the energy region above 1680 MeV as compared to previous unitarized scattering amplitudes constrained to a large amount of experimental data in the neutral S = -1 meson-baryon sector. We observe a tension between our model and the LHCb K-A distribution in the region close to threshold, largely dominated by the presence of the still poorly known (1620) state. We discuss in detail the different production mechanisms probed via femtoscopy and spectroscopy that could provide valid explanations for such disagreement, indicating the necessity to employ future correlation data in other S = -2 channels such as pi and K<overline>Sigma.
|
Albaladejo, M., Feijoo, A., Nieves, J., Oset, E., & Vidaña, I. (2024). Femtoscopy correlation functions and mass distributions from production experiments. Phys. Rev. D, 110(11), 114052–21pp.
Abstract: We discuss the relation between the Koonin-Pratt femtoscopic correlation function (CF) and invariant mass distributions from production experiments. We show that the equivalence is total for a zero source-size and that a Gaussian finite-size source provides a form-factor for the virtual production of the particles. Motivated by this remarkable relationship, we study an alternative method to the Koonin-Pratt formula, which connects the evaluation of the CF directly with the production mechanisms. The differences arise mostly from the T-matrix quadratic terms and increase with the source size. We study the case of the (DD)-D-0*(+) and D+D*(0) correlation functions of interest to unravel the dynamics of the exotic T-cc (3875)(+), and find that these differences become quite sizable already for 1 fm sources. We nevertheless conclude that the lack of coherence in high-multiplicity-event reactions and in the creation of the fire-ball source that emits the hadrons certainly make much more realistic the formalism based on the Koonin-Pratt equation. We finally derive an improved Lednicky-Lyuboshits (LL) approach, which implements a Lorentz ultraviolet regulator that corrects the pathological behavior of the LL CF in the punctual source-size limit.
|
Nieves, J., Feijoo, A., Albaladejo, M., & Du, M. L. (2024). Lowest-lying 1/2- and 3/2- ΛQ resonances: From the strange to the bottom sectors. Prog. Part. Nucl. Phys., 137, 104118–23pp.
Abstract: We present a detailed study of the lowest-lying 1/2(-) and 3/2(-) Lambda Q resonances both in the heavy 2 2 quark (bottom and charm) and the strange sectors. We have paid special attention to the interplay between the constituent quark-model and chiral baryon-meson degrees of freedom, which are coupled using a unitarized scheme consistent with leading-order heavy quark symmetries. We show that the Lambda(b)(5912) [J(P) = 1/2(-)], Lambda(b)(5920) [J(P) = 3/2(-)] and the Lambda(c)(2625) [J(P) = 3/2-], and the Lambda(1520) [J(P) = 3/2(-)] admitting larger breaking corrections, are heavyquark spin-flavor siblings. They can be seen as dressed quark-model states with Sigma Q(()*()) pi molecular components of the order of 30%. The J(P)=1(-) Lambda(2595) has, however, a higher molecular 2 probability of at least 50%, and even values greater than 70% can be easily accommodated. This is because it is located almost on top of the threshold of the Sigma(c)pi pair, which largely influences its properties. Although the light degrees of freedom in this resonance would be coupled to spin-parity 1(-) as in the Lambda(b)(5912), Lambda(b)(5920) and Lambda(c)(2625), the Lambda(c)(2595) should not be considered as a heavy-quark spin-flavor partner of the former ones. We also show that the Lambda(1405) chiral two-pole pattern does not have analogs in the 1 – charmed and bottomed sectors, because the 2 N D-(*()) and N (B) over bar (()*()) channels do not play for heavy quarks the decisive role that the N (K) over bar does in the strange sector, and the notable influence of the bare quark-model states for the charm and bottom resonances. Finally, we predict the existence of two Lambda(b)(6070) and two Lambda(c)(2765) heavy-quark spin and flavor sibling odd parity states.
|
Feijoo, A., Gazda, D., Magas, V., & Ramos, A. (2021). The (K)over-barN Interaction in Higher Partial Waves. Symmetry-Basel, 13(8), 1434–22pp.
Abstract: We present a chiral (K) over barN interaction model that has been developed and optimized in order to account for the experimental data of inelastic (K) over barN reaction channels that open at higher energies. In particular, we study the effect of the higher partial waves, which originate directly from the chiral Lagrangian, as they could supersede the role of high-spin resonances employed in earlier phenomenological models to describe meson-baryon cross sections in the 2 GeV region. We present a detailed derivation of the partial wave amplitudes that emerge from the chiral SU(3) meson-baryon Lagrangian up to the d-waves and next-to-leading order in the chiral expansion. We implement a nonperturbative unitarization in coupled channels and optimize the model parameters to a large pool of experimental data in the relevant energy range where these new contributions are expected to be important. The obtained results are encouraging. They indicate the ability of the chiral higher partial waves to extend the description of the scattering data to higher energies and to account for structures in the reaction cross-sections that cannot be accommodated by theoretical models limited to the s-waves.
|