|   | 
Details
   web
Records
Author Han, X.F.; Wang, L.; Yang, J.M.
Title Higgs pair signal enhanced in the 2HDM with two degenerate 125 GeV Higgs bosons Type Journal Article
Year 2016 Publication Modern Physics Letters A Abbreviated Journal (up) Mod. Phys. Lett. A
Volume 31 Issue 31 Pages 1650178 - 14pp
Keywords Two-Higgs-doublet model; Higgs; LHC
Abstract We discuss a scenario of the type-II two-Higgs- doublet model (2HDM) in which the b (b) over bar gamma gamma rate of the Higgs pair production is enhanced due to the two nearly degenerate 125 GeV Higgs bosons ( h, H). Considering various theoretical and experimental constraints, we figure out the allowed ranges of the trilinear couplings of these two Higgs bosons and calculate the signal rate of b (b) over bar gamma gamma from the productions of Higgs pairs (hh, hH, HH) at the large hadron collider (LHC). We find that in the allowed parameter space some trilinear Higgs couplings can be larger than the Standard Model (SM) value by an order and the production rate of b _ b.. can be greatly enhanced. We also consider a “decoupling” benchmark point where the light CP-even Higgs has a SM-like cubic self-coupling while other trilinear couplings are very small. With a detailed simulation on the b (b) over bar gamma gamma signal and backgrounds, we find that in such a “decoupling” scenario the hh and hH channels can jointly enhance the statistical significance to 5 sigma at 14 TeV LHC with an integrated luminosity of 3000 fb(-1).
Address [Han, Xiao-Fang; Wang, Lei] Yantai Univ, Dept Phys, Yantai 264005, Peoples R China, Email: leiwang@ytu.edu.cn
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-7323 ISBN Medium
Area Expedition Conference
Notes WOS:000383789300007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2817
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V.R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Search for scalar leptoquarks in pp collisions at root s=13TeV with the ATLAS experiment Type Journal Article
Year 2016 Publication New Journal of Physics Abbreviated Journal (up) New J. Phys.
Volume 18 Issue Pages 093016 - 25pp
Keywords leptoquark; ATLAS; LHC
Abstract An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in pp collisions at root s = 13 TeV at the large hadron collider, have been considered. An integrated luminosity of 3.2 fb(-1), corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 and 1050 GeV (1160 and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.
Address [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000384093400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2828
Permanent link to this record
 

 
Author Valero, A.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Sanchis, E.; Solans, C.; Torres, J.; Valls Ferrer, J.A.
Title The ATLAS tile calorimeter ROD injector and multiplexer board Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 629 Issue 1 Pages 74-79
Keywords LHC; ATLAS; Calorimeter; Data acquisition; FPGA; Bit error rate
Abstract The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.
Address [Valero, A.; Castillo, V.; Ferrer, A.; Hernandez, Y.; Higon, E.; Solans, C.; Valls, J. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: alberto.valero@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000287556100012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 555
Permanent link to this record
 

 
Author Unno, Y. et al; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti-Garcia, S.; Soldevila, U.
Title Development of n(+) -in-p large-area silicon microstrip sensors for very high radiation environments-ATLAS12 design and initial results Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 765 Issue Pages 80-90
Keywords Silicon strip; n(+)-in-p; P-type; Radiation-tolerant; HL-LHC; PTP
Abstract We have been developing a novel radiation tolerant n(+)-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float zone wafers, where large area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 pm and slim edge space of 450 pm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.
Address [Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England, Email: yoshinobu.unno@kek.jp
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344621000016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2002
Permanent link to this record
 

 
Author Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; Garcia, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A.; Sadrozinski, H.F.W.
Title Low-resistance strip sensors for beam-loss event protection Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A
Volume 765 Issue Pages 252-257
Keywords Silicon radiation detectors; Strip sensors; Punch through protection; Beam loss; HL-LHC; ATLAS Upgrade
Abstract AC coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punchthrough structure leading to large voltages. We present here our developments to fabricate lowresistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.
Address [Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.] CSIC, Ctr Nacl Microelect IMB CNM, Barcelona 08193, Spain, Email: Miguel.Ullan@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344621000048 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2003
Permanent link to this record