|   | 
Details
   web
Records
Author n_TOF Collaboration (Sabate-Gilarte et al.); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERNx Type Journal Article
Year 2017 Publication European Physical Journal A Abbreviated Journal (down) Eur. Phys. J. A
Volume 53 Issue 10 Pages 210 - 13pp
Keywords
Abstract A new high flux experimental area has recently become operational at the nTOF facility at CERN. This new measuring station, nTOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutronconverting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197 Au foils in the beam.
Address [Sabate-Gilarte, M.; Vlachoudis, V.; Aberle, O.; Bacak, M.; Brugger, M.; Calviani, M.; Cardella, R.; Cerutti, F.; Chiaveri, E.; Ferrari, A.; Hernandez-Prieto, A.; Kadi, Y.; Losito, R.; Macina, D.; Mingrone, F.; Montesano, S.; Rubbia, C.; Weiss, C.] CERN, European Org Nucl Res, Geneva, Switzerland, Email: massimo.barbagallo@ba.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000413766400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3350
Permanent link to this record
 

 
Author n_TOF Collaboration (Mastromarco, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title Cross section measurements of Gd-155,Gd-157(n,) induced by thermal and epithermal neutrons Type Journal Article
Year 2019 Publication European Physical Journal A Abbreviated Journal (down) Eur. Phys. J. A
Volume 55 Issue 1 Pages 9 - 20pp
Keywords
Abstract Neutron capture cross section measurements on Gd-155 and Gd-157 were performed using the time-of-flight technique at the nTOF facility at CERN on isotopically enriched samples. The measurements were carried out in the nTOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for Gd-155 and Gd-157, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for Gd-155 and Gd-157, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2.01(28)x10-4 and 2.17(41)x10-4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + Gd-155 and n + Gd-157 systems, respectively.
Address [Mastromarco, M.; Barbagallo, M.; Colonna, N.; Damone, L. A.; Mazzone, A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: massimi@bo.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000456675600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3892
Permanent link to this record
 

 
Author n_TOF Collaboration (Amaducci, S. et al); Domingo-Pardo, C.; Tain, J.L.
Title Measurement of the U-235(n, f) cross section relative to the Li-6(n, t) and B-10(n,alpha) standards from thermal to 170 keV neutron energy range at n_TOF Type Journal Article
Year 2019 Publication European Physical Journal A Abbreviated Journal (down) Eur. Phys. J. A
Volume 55 Issue 7 Pages 120 - 19pp
Keywords
Abstract .The U-235(n, f ) cross section was measured at n_TOF relative to Li-6(n, t) and B-10(n,alpha) , with high resolution ( L=183.49(2) m) and in a wide energy range (25meV-170keV) with 1.5% systematic uncertainty, making use of a stack of six samples and six silicon detectors placed in the neutron beam. This allowed us to make a direct comparison of the yields of the U-235(n, f ) and of the two reference reactions under the same experimental conditions, and taking into account the forward/backward emission asymmetry. A hint of an anomaly in the 10-30keV neutron energy range had been previously observed in other experiments, indicating a cross section systematically lower by several percent relative to major evaluations. The present results indicate that the cross section in the 9-18keV neutron energy range is indeed overestimated by almost 5% in the recently released evaluated data files ENDF/B-VIII.0 and JEFF3.3, as a consequence of a 7% overestimate in a single GMA node in the IAEA reference file. Furthermore, these new high-resolution data confirm the existence of resonance-like structures in the keV neutron energy region. The results here reported may lead to a reduction of the uncertainty in the 1-100keV neutron energy region. Finally, from the present data, a value of 249.7 +/- 1.4( stat )+/- 0.94( syst ) b<bold>eV has been extracted for the cross section integral between </bold>7.8 and 11eV, confirming the value of 247.5 +/- 3 b<bold>eV recently established as a standard</bold>.
Address [Amaducci, S.; Cosentino, L.; Finocchiaro, P.; Musumarra, A.] INFN, Lab Nazl Sud, Catania, Italy, Email: finocchiaro@lns.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000477050900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4083
Permanent link to this record
 

 
Author Algora, A.; Tain, J.L.; Rubio, B.; Fallot, M.; Gelletly, W.
Title Beta-decay studies for applied and basic nuclear physics Type Journal Article
Year 2021 Publication European Physical Journal A Abbreviated Journal (down) Eur. Phys. J. A
Volume 57 Issue 3 Pages 85 - 28pp
Keywords
Abstract In this reviewwe will present the results of recent beta-decay studies using the total absorption technique that cover topics of interest for applications, nuclear structure and astrophysics. The decays studied were selected primarily because they have a large impact on the prediction of (a) the decay heat in reactors, important for the safety of present and future reactors and (b) the reactor electron anti-neutrino spectrum, of interest for particle/nuclear physics and reactor monitoring. For these studies the total absorption technique was chosen, since it is the only method that allows one to obtain beta-decay probabilities free from a systematic error called the Pandemonium effect. The total absorption technique is based on the detection of the. cascades that follow the initial beta decay. For this reason the technique requires the use of calorimeters with very high. detection efficiency. The measurements presented and discussed here were performed mainly at the IGISOL facility of the University of Jyvaskyla (Finland) using isotopically pure beams provided by the JYFLTRAP Penning trap. Examples are presented to show that the results of our measurements on selected nuclei have had a large impact on predictions of both the decay heat and the anti-neutrino spectrum from reactors. Some of the cases involve beta-delayed neutron emission thus one can study the competition between gamma – and neutron-emission from states above the neutron separation energy. The gamma-to-neutron emission ratios can be used to constrain neutron capture (n, gamma) cross sections for unstable nuclei of interest in astrophysics. The information obtained from the measurements can also be used to test nuclear model predictions of half-lives and Pn values for decays of interest in astrophysical network calculations. These comparisons also provide insights into aspects of nuclear structure in particular regions of the nuclear chart.
Address [Algora, A.; Tain, J. L.; Rubio, B.] Univ Valencia, CSIC, IFIC, Paterna, Spain, Email: algora@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000625127600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4754
Permanent link to this record
 

 
Author n_TOF Collaboration (Mastromarco, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title High accuracy, high resolution U-235(n,f) cross section from n_TOF (CERN) from 18 meV to 10 keV Type Journal Article
Year 2022 Publication European Physical Journal A Abbreviated Journal (down) Eur. Phys. J. A
Volume 58 Issue 8 Pages 147 - 13pp
Keywords
Abstract The U-235(n,f) cross section was measured in a wide energy range (18 meV-170 keV) at the nTOF facility at CERN, relative to Li-6(n,t) and B-10(n,alpha) standard reactions, with high resolution and accuracy, with a setup based on a stack of six samples and six silicon detectors placed in the neutron beam. In this paper we report on the results in the region between 18 meV and 10 keV neutron energy. A resonance analysis has been performed up to 200 eV, with the code SAMMY. The resulting fission kernels are compared with the ones extracted on the basis of the resonance parameters of the most recent major evaluated data libraries. A comparison of the nTOF data with the evaluated cross sections is also performed from thermal to 10 keV neutron energy for the energy-averaged cross section in energy groups of suitably chosen width. A good agreement, within 0.5%, is found on average between the new results and the latest evaluated data files ENDF/B-VIII.0 and JEFF-3.3, as well as with respect to the broad group average fission cross section established in the framework of the standard working group of IAEA (the so-called reference file). However, some discrepancies, of up to 4%, are still present in some specific energy regions. The new dataset here presented, characterized by a unique combination of high resolution and accuracy, low background and wide energy range, can help to improve the evaluations from the Resolved Resonance Region up to 10 keV, also reducing the uncertainties that affect this region.
Address [Mastromarco, M.; Colonna, N.; Diacono, D.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: amaducci@lns.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000840312100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5328
Permanent link to this record